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1. INTRODUCTION

In this paper we consider the differential equation
Ly + plx}y = 0, (1)

where L is a disconjugate linear operator of order » and p(x) is a continuous
function in [0, c0). By the well known theorem of Polya [8], we may assume
that the operator L is given by the factorization

L = p,1 Dp,, > ps Dpy

where p; € C"*1 and p; > 0 1n [0, o), 7 = 1,..., 4 1. For short we denote
Lyy =pyand L;y = pyyq D(Li 1), i = 1,..,m — 1.

Let us assume that there is a nontrivial solution of Eq. (1) which vanishes
at a and has at least n + & — 1 zeros, k = 1,2,..., in [a, %], ¥ > a. The
infimum of points x which has this property, exists. It is called the k-th
conjugate point of 4 and is denoted by 7,(a). Using compactness argument
({1]), one may easily show that if n,(«) exists then n,(a) > a and there is a
solution which vanishes at a and at 7,(a) and has at least n + 2 — 1 zeros
in [a, n;(a)]. Such a solution is called an extremal solution for the interval
la, 74(a)].

The distribution of zeros of extremal solutions was investigated by
Leighton and Nehari [4] for the equation

(ry")" + px) y = 0.
Hunt [2] considered the distribution of the zeros of solutions of the self-
adjoint differential equation

(™)™ + p(x)y = 0.
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Johnson [3] studied the same problem for Eq. (1) when L is an even order
operator and p(x) < 0. In this paper, the order # of the operator L is arbitrary
and we assume that p(x) has a constant sign. The main result is the following:

THEOREM 1. Let y(x) be an extremal solution of Eq. (1) for the interval
[a, ni(@)]). Then y(x) has exactly n + k — 1 zeros in [a, ni(a)]. The only zeros
of ¥(x) in (a, ni(a)) are exactly k — 1 zeros of odd multiplicities. The zero at
(@) is of odd or even multiplicity according to whether p(x) 2> 0 or p(x) < 0.
If p(x) <O then y(x), Lyy,....,.L,_,y have no zeros in (n,(a), c0) and if
(=1 p(x) < O, then similar conclusion holds for [0, a).

This theorem will be used to establish the existence of solutions with
given number of simple zeros and to prove some properties of n(a) as
a function of a.

2.

DerFINITION. Let y(x) be a solution of Eq. (1) which has at the points
Xy yooey Xy @ =2 < < ¥ =b, zeros of multiplicities m(x,),..., m(x,),
respectively. For the solution y(x) and the interval [a, 8] we define (cf. [3]),

I = {i | m(x,) is even or x; = a or x; = b},
J={j|a <x; <band m(x;) s odd},
M(y) =3, m(x;) + 3} [m(x;) — 1]

iel jeJ
We shall denote by m(x; , ¥) the multiplicity of the zero of the solution y(x)
at Xy .
For the first two lemmas there is no need to assume that p(x) is of constant
sign, so we assume that p(x) changes its sign [ times in (g, ).

Lemma 1. Every solution of Eq. (1) satisfies M(y) < n + I. Moreover,
if M(y)=n+ 1, then L,y (t = 1,...,m — 1) has zeros only of the following
types:

(a) A zero at a point where y(x) has a zero of multiplicity bigger than t.

(b) Exactly one simple zero between consecutive zeros of L;_, y.

Proof. (Cf.[2]). We assume that y(x) has at the pointsa =x, <-- <x,=b
zeros of multiplicities m(x,),..., m(x,). We denote the number of zeros of
multiplicity bigger or equal to ¢ by ;. Evidently, ; = r and 7, = 0. Now,
2:-:11 r; is the number of the zeros of y(x) in [a, ] counting multiplicities,

since in the summation the zero at x; is counted exactly m(x,) times.
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L,y = p,y vanishes at r; different points of [a, b]. L,y vanishes by Rolle’s
theorem at least at r, — 1 points between the 7, points where L;y vanishes,
and at r, points where y(x) has a zero of multiplicity bigger than 1. Therefore
L,y vanishes at least at r, + r, — 1 different points of [a, b]. It follows
similarly that L,_,v vanishes at least at r; + - + r,,_; — (n — 2) different
points of [a,b]. By Rolle’s theorem, L, ;v changes its sign at least
ry + o+ 7,y —(n — 1) times in (@, b), and Ly changes its sign at least
Z?: r; — n times.

Therefore p(x)y = —Ly changes its sign at least at ¥, , m(x;) —»n
different points of (a, b). Now, p(x) changes its sign / times in (a, b) and y(x)
changes its sign at | J| = 3., 1 points. Hence,

Zm(x,-)—n<21 +
J{WX) J
and the inequality M(y) < n + [ follows.

The equality M(y) = n + I occurs if and only if L,y (t = 1,...,n — 1)
vanishes exactly at , 4 -+ 4+ r,,, — ¢ different points. Among these points
there are exactly r,,, points where y(x) has a zero of multiplicity bigger than ¢
and exactly r, 4+ -+ 4 r, — t zeros which are located by Rolle’s theorem
between the r, 4+ -+ + r, — (t — 1) points where L; ; vanishes. Now the
zeros which exist according to Rolle’s theorem are simple. For, L, y vanishes
at r;,, points where y(x} has zeros of multiplicities bigger than ¢ + 1, and
at r; -+ ==+ -+ rpqy — (¢ + 1) points between the zeros of L;y. If one of the
7y + -+ ry — t zeros of L,y which exists according to Rolle’s theorem
were a multiple zero, then L, ; would have an additional zero at this point.
This is impossible since L, ;¥ vanishes exactly at r; 4+ =+ 4 ry — (¢ + 1)
points.

Thus multiple zeros of L,y (¢ = 1,...,n — 1) are located only at points
where the preceeding derivatives have multiple zeros. In particular L,,_,y
has exactly 3;_, m(x;) — (n — 2) simple zeros in [a, b] since the zeros of
y(x) are of multiplicity less than =n. L, ,y has therefore exactly
S m(x;) — (n — 1) simple zeros, all of them in (a, b). Ly changes its sign
by Rolle’s theorem exactly 3';_, m(x;) — n times. Of course, Ly may have
even order zeros in (a, b).

LemMa 2. Let y(x) be a solution of Eq. (1) which satisfies M(y) = n -+ 1
in {a, b]. If p(x) <O (p(x) > 0) in a left neighborhood of b, then m(b) and
n + | — m(a) are even (odd).

Proof. By Lemma 1, L,y does not vanish right of the last zero of L, ;¥
in [a, b]. Especially,

(Loy)) = -+ = (Lm@-12)() = O,
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and
(Ln@my)) # 0,..., (Ln1¥)(b) 5 0.

We denote the last zero of L, y(m(b) < t < n — 1) in [a, b] by 8, .
By the previous observation

Bn—l < Bn—z << Bfn(b) < b

The last zero of Ly in [a, b] is of course b. But if we denote the last of the
3. m(x;) — n changes of sign of Ly by B, , then 8,, < 8,_, . Hence p(x) y(x)
has a constant sign in [B,, , b] and especially in [8,,_, , &].

We consider the case when p(x) <0 in some left neighborhood of b.
Without loss of generality we may assume that y(x) > 0 left to b, ie.,

(— 1)L y)Xb) > 0.
Integrating p,.,(x) D(L,_;¥) = —p(x) ¥(x) on (B,_y, b), we obtain

Y 4

(Lnay) () =Lay

Bp_1 Bp1 Prn+1(X)

Therefore L,,_;y > 0 in (B,_; , 8] and especially in (8,_,, 8]. By integrating
pu(®) D(Ly_3y) =Ly 1y on (B,_5,b), we obtain that L, .,y >0 on
(Br-z, 8]. In a similar way we obtain that (L,.¢)y}0) > 0. In view of
(—1)"® (L) ¥)() > 0, we deduce that m(b) is even. As M(y) =n+{
and as m(a) + m(b) = M(y) (mod 2), it follows that m(b) and # + I — m{a)
are of the same parity.

When p(x) > 0 in some left neighborhood of b, the proof is similar. The
proof of the lemma is valid even if p(x) is not continuous at b but p(x) y(x)
1s integrable near b.

CoroLLARY 1. Any oscillatory solution of Eq. (1) has a finite number of
multiple zeros and infinitely many simple zeros.

This follows readily from the boundedness of M(y).
In the remainder of the paper we assume that p(x) is of a constant sign.
For convenience we restate Lemma 1 and Lemma 2 for that case.

Lemma 3. Let p(x) be of a constant sign. For every solution y(x) of Eq. (1),
M(y) <n. If M(y)=n then m(b) and n — m(a) are odd (even) when
p(x) = 0 (p(x) < 0).

CoroiLLARY 2. Let p(x) < 0 and let y(x) be a solution of Eq. (1) such that
M(y) = n in [a, b]. Then none of the functions Lyy,L,y,...,L,_,y vanishes
in (b, 0) and all of them have the same sign. For the special equation
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Yy L p(x)y = 0,9, .., ¥V are all monotone and | y(x)| = Ax"1 when
x — 00,

Proof. There is some neighborhood of 4 such that L,y (0 <t <n — 1)
do not vanish in it. Let ¢ > b be the first point to the right of b such that
one of the derivatives, say L,y, vamishes at ¢. By the proof of Lemma |,
L,y vanishes at r; + - 4+ 7., — s different points of [a, b] and also at .
We consider now Eq. (1) in [a, ¢]. L,y vanishes at r; 4 - +7,; — s + 1
different points of [a,c¢] and therefore Ly changes its sign at least
3 m(x;) — n -+ 1 times in (g, ), i.e., more times than in (a, b). But this
is impossible since m(b) is even and p(x) y(x) does not change its sign in
(b — ¢, c).

If y(x) > Oin (b, o), then by the proof of Lemma 2 we see that (L, y)(b) >0
(0 <<t <<n— 1) and therefore all the functions L,y are strictly increasing.
For the equation y™ + p(x) v = 0 we obtain by integration

n—-1 1

y®) = Y S y0E) (v —b)

t=m(b) *°

If (—1)" p{x) << O, similar properties can be proved for [0, a).

Remark. If p(x) changes its sign at / points, all of them in (a, b), and
(%) < 0 near b, then the same property holds for every solution of Eq. (1)
which satisfies M(y) = n -+ I. The proof is identical to that of Corollary 2.

COROLLARY 3. The sum of the mulitiplicities of the zeros of a solution of
Eq. (1) at s points does not exceed n 4 s — 2.

This follows by Lemma 3, since ) ; m(x,) << M(y) -+ (s — 2). For
s = 2, this was proved by Nehari [7], by applying generalized Wronskians.
As a matter of fact, Theorems 3.2-3.4 of [7] may be proved by applying
Lemma 3. Also Theorem 4 and 8 of Levin [S] are particular cases of
Lemma [ and Lemma 2.

Now we turn to the extremal solutions of Eq. (1). Like Johnson [3,
Lemma 3] we prove the following.

LemMa 4. If y(x) is an extremal solution for [a, n,{(a)], then M(y) = n.

Proof. We prove that if y(x) is a solution of Eq. (1) in [a, b] such that
M(y) < n, then there exists another solution of Eq. (1) with the same
number of zeros in {a, b}, hence y(x) is not an extremal solution.

First, we assume that p(x)>0. Let y(x) have at the points
a=% < <x =0b zeros of multiplicities m(x,),..., m(x,) such that
M(y) <n.
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We consider the following M(y) boundary value conditions

u'x;) = 0, 0t <mx)— 1, iel, x;, #b,
() =0, O0<Lt<mx)—2, je],
u'¥(b) = 0, 0 <t <mb) — 2,

utm-D(p) = 1,

and add n — M(y) 2> | conditions. If n — m(a) is even, we add n — M(y)
conditions at b:

wh(B) =0, mb) <t < mb)+n— My)—1.

If n — m(a) is odd, we add one condition at @ and n — M(y) — 1 conditions
at b:

u(m(a))(a) — 0’

wh(b) =0, mb) <t < mb)+n— My)—2.

This nonhomogeneous system of # boundary value conditions will be denoted
by (B). Now, the associated homogeneous system (H) has only the trivial
solution. Indeed, if (H) had a nontrivial solution v(x), then M(v) = » and
n — m(a, v) would be even, thus contradicting Lemma 3. Therefore the
nonhomogeneous system (B) has a unique solution which is denoted by
¥(x). 3(x) has at b a zero exactly of multiplicity m(b, y) — 1 and #(x) and y(x)
are thus linearly independent.

For every a, the solution y,(x) = y(x) + o¥(x) has at »; (t€l, x, % b
a zero at least of multiplicity m(x;), at x; (f € J) a zero at least of multiplicity
m(x;) — 1, and at b a zero exactly of multiplicity m(b) — 1. By Taylor’s
theorem it follows that for | « | sufficiently small, y,(x) has additional zeros
in given neighborhoods of »; (j € J) (possibly at x;) and b. These zeros are
simple for small a. Else, as o — 0, we would find that y(x) = lim,_, y,(x)
had at x; a zero of multiplicity greater than m(x;). Moreover, if the sign of «
is properly chosen, the simple zero near & will be to the left of 4, in [a, ).
y1(x) has in [a, b] the same number of zeros as y(x) and M(y,) < M(y).

By repeating a similar process m(b) times, we shift the zeros at b one by
one to the left and obtain a solution which has in [a, b) the same number of
zeros as y(x) has in [a, b].

When p(x) << 0 the proof is similar.

LeMMA 5. An extremal solution for [a, n,(a)] has exactly n + k — 1 zeros
in this interval.
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Proof. Let us assume on the contrary that an extremal solution y(x) has
at least n + % zeros in [a, mi{a)]. The zero of y(x) at n(@) is not simple,
otherwise y(x) would have n + &k — 1 zeros in [a, n;(a)). We consider now
the following M(y) — 2 = n — 2 boundary value conditions;

uP(x,) = 0, 0<t <mx)— 1, iel, = # na),
u(na)) =0, 0 <t < mpla)) — 3,
uP(x) =0, 0<t<mx)—2  jel.

This problem has a nontrivial solution §(x), linearly independent of y(x).

Assume that y(x) has at n,(a) a zero exactly of multiplicity m(n,(a)) — 2.
Then for |«| sufficiently small and o of suitable sign, the solution
yi(x) = y(x) + af(x) has at n,(a) a zero of multiplicity m(n,(a)) — 2 and
two simple zeros to the right and to the left of »,(a). Moreover, y,(x) has
simple zeros near each x; (e J). By simple count we find that y(x) has at
least # -+ k— 1 zeros in [a,n(a)] and M(y,) == — 2, contradicting
Lemma 4.

If y(x) has at n,(a) a zero of multiplicity m(n,(a)) — 1, then similarly
yi(x) = ¥(x) + of(x) has at least m -+ &k — 1 zeros in [a,n(a)] and
M(y,) =n— L.

If §(x) has at n;(a) a zero of multiplicity m(n;(a)) or more, then there is
a linear combination of j(x) and y(x) such that M(c;y + ;) > n, yielding
again a contradiction.

As a result of Lemma 5, we conclude that 7,(a) << n;.,4(a).

Lemma 6. Every extremal solution for [a, n.(a)] has exactly k — 1 zeros
of odd multiplicity and no zero of even multiplicity in (a, n,{(a)).

Proof. Every extremal solution for [a, n,(a)] satisfies

Y mx) =n+k—1, Xl‘lm(xi)rk;[m(x,-)— 1] =n.

1oz

Therefore | J| =k — 1 and every extremal solution has exactly & — 1
zeros of odd multiplicity in (a, n,(a)). Assume now that an extremal solution
¥(x) has in (a, 9x(a)) a zero x, of even multiplicity (sel, x, # a, 7 (a),
m(x,) >> 2). In the system

wWO(x) =0, O0<t<mx)—1, iel, i+s
w®(x) =0, 0<t<mx)—3,
wh(x) =0, O0<t<max)—2  jec],



454 URI ELIAS

there are T, m(x,) + [m(x,) — 2] + X, [m(xy) — 1] = M(y) —2 = n — 2
boundary value conditions. This system has a nontrivial solution (x) linearly
independent of y(x). We now obtain the desired contradiction as in Lemma 5,
by considering the multiplicity of the zero of J(x) at x, .

Lemmas 5, 6 and 3 and Corollary 2 yield the assertions of Theorem 1.

Remark. It is well known [7, 6] that every linear differential equation of
order n has an extremal solution for [a, 7,(a)] which is positive in (a, 5,(a)).
For Eq. (1), every extremal solution for [a, n,(a)] has this property.

3.

THEOREM 2. If a solution of Eq. (1) has m (m == n) zeros (counting multi-
plicities) in an open or a half open interval, then there exists a solution of Eq. (1)
with at least m simple zeros in the same interval.

Proof. If a solution of Eq. (1) has m = n + k — 1 zeros in [a, b) then
(@) < b and an extremal solution of Eq. (1) has the same number of zeros
in [a, nx(a)] C [a, b). Therefore it 1s sufficient to prove that for every € > 0,
there exists a solution with n 4 2 — | simple zeros in [a, n.(2) + €). A
priori we select € > 0 such that n,(a) -+ € < y;4(a).

Let y(x) be an extremal solution for [a, n,(a)]. The system

u'(x,) == 0, 0Lt
u(ny(@)) =0, 0
0

u(x;) = 0,

< mx;,y) — 1, rel, x; #* n{a),

m(m(a)) — 3,
m(xa) o 2’

.
/

t

NN
AN/

t

of n — 2 boundary value conditions has a non-trivial solution y(x) which is
linearly independent of y(x). As in the proof of Lemma 5, it is easy to see
that if y(x) has at n,(a) a zero of multiplicity greater than m(n,(a)) — 2, then
some linear combination of ¥(x} and #(x)} will lead to a contradiction. There-
fore y(x) has at n,(a) a zero exactly of multiplicity m(xn(a)) — 2. As in
Lemma 5, we find that for suitable o, , the solution y,(¥) = y(x) + o ¥(x)
has at least n + k& — 1 zeros in [a, (@) + €). Since n(a) + € < (@),
¥,(x) has exactly » 4- £ — 1 zeros in [a, n;(a) + €). y,(x) has more simple
zeros than y(x), and M(y,) < M(y) =n.

Now, as in the proof of Lemma 4, we define successively yy(x) =
yi{x) + ap Fy(x), v3(x) = ¥4(x) + o3 ¥a(%),..., such that each y,(x) has exactly
n -+ k—1 zeros in [a, ni(a) + €) and y,(x) has more simple zeros than
yi-1(x). After a finite number of steps we obtain a solution y,(x) =
y(x) + ay F(x) + -+ + o, ¥,_;(x) which has exactly » + & — 1 simple zeros
in [a, 74(a) + ¢).
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When m(n,(a)) = 1, we begin the proof by splitting the rightmost multiple
zero of y(x). For the intervals of the form (a, b) and (a, b] the proof is
similar.

Applying Theorem 2, we shall prove the following:

THEOREM 3. m(7) s a strictly increasing continuous function which is
defined on an interval of the form [0, b), 0 < b < 0.

For the proof we require the following lemmas.

Lemma 7. If n(a) exists, the function v, is defined and continuous tn some
neighborhood of a.

Proof. By Theorem 2 there is a solution y(x) of Eq. (1) with n + &k — 1
simple zeros in [a, n.(a) + ¢€), the first of which 1s at a. Let u(x) be the
solution of Eq. (1) which satisfies at ¢ the initial value conditions
u¥(c) = y(a),i =0, 1,..., n — 1. The solutions of Eq. (1) are continuously
dependent on the initial conditions. Therefore, if | ¢ — a| is sufficiently
small, y(x) and wu(x) are close and u(x) has at least » 4- k& — 1 zeros in
[¢, ne(a) + €), the first of which is ¢. Thus 7, exists in a neighborhood of a.
Moreover, by definition, when | ¢ — a| << 8; then x,(c) <7(a) + e By
interchanging the roles of a and ¢, we get m(a) <muc) + ¢ when
| ¢ — a| < 8, . These inequalities prove the continuity of »; .

LemMa 8. If n; is defined in an interval, it is strictly increasing there.

Proof. First we show that if ; is defined at 4, then it is strictly increasing
in some left neighborhood of a. Indeed, as in Theorem 2, one can show that
for given ¢, there is a solution with at least » + k2 — 1 simple zeros in
(a — ¢ , ni(a)] and the first of these zeros is in (@ — ¢, a). This solution is
given by v(x) = y(x) + au¥(x) + ay ¥, (x) + - + o, ¥,,(x) and as the param-
eters oy , o ,..., &, vary continuously, its first zero covers some left neigh-
borhood (a — €, , a) of a. This means that for every c€(a — ¢, , a) there
is a solution which vanishes at ¢ and has n - £ — | simple zeros in [c, n(@)]-
This solution is not an extremal one since it has n -+ £ — | simple zeros,
therefore n,(c) < ni(a).

Now, if a function is continuous in an interval and is strictly increasing
in a left neighborhood of each point, it is strictly increasing in the whole
interval.

Lemma 9. If ny(a) exists, ; is defined on [0, a.

Proof. By the proof of Lemma 8§, 7, is defined in some open interval 4
containing a. Let @’ == inf 4. Then @' < a and 7, is defined in (&', a] and



456 URI ELIAS

strictly increasing there. In (@', @] we choose a decreasing convergent sequence
a; | a@'. Then the decreasing sequence 7,(a;) converges and there is a sequence
of extremal solutions y,(x) such that y,(x) vanishes at a; and has n + & — 1
zeros in [a;, ni(a)]. We choose a subsequence of y,(x) which converges
together with its derivatives. Its limit function is a solution of Eq. (1) which
vanishes at @’ and has n + & — 1 zeros in [@’, 7;(@)]. Thus n,(a’) exists.
If @’ > 0, then by Lemma 7, #; is defined in a neighborhood of &/, contra-
dicting the definition of a’.

This completes the proof of Theorem 3.

In the definition of 7,(a) we considered only those solutions of Eq. (1)
which vanish at ¢. Now we see that this restriction in the definition is not
necessary. Indeed, assume that there is a solution of Eq. (1) with » + &2 — 1
zeros in [a, yi{a)] such that its first zero in the interval is ¢ > a. Then by
definition 7,(c) << m{@) and this contradicts Theorem 3. This observation
is stated now as

CoroLLARY 4. No solution of Eq. (1) has n 4+ k — 1 zeros in (a, p,(a)] or
in [a, ni(a)).
We conclude the paper with the following corollary:

CoroLLARY 5. If p(x) >0 (or p(x) <O0), then ni(a) is a continuous
Jfunction of p(x).

Proof. Assume 0 < p(x) — & << py(x) < p(x) + 3. Let y(x) be a solution
of Eq. (1) which has n 4- & — 1 simple zeros in [a, n;(a) + €} and y,(x) the

solution of the equation
Ly, + pr(®) 3y = 0,
which satisfies
3@ =y%a), 0<t<n—1.

The solutions of Eq. (1) are continuously dependent on the coefficient p(x).
Therefore, for & sufficiently small, y,(x) has at least n + 2 — 1 zeros in
[a, ni(@) + €). The continuity of n,(a) as a function of p(x) follows now as
in Lemma 7.
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