The Extremal Solutions of the Equation Ly + p(x)y = 0

Uri Elias

Department of Mathematics, Technion-Israel Institute of Technology, Haifa, Israel

Submitted by J. P. LaSalle

IN MEMORY OF MEIRA LAVIE

1. Introduction

In this paper we consider the differential equation

$$Ly + p(x)y = 0, (1)$$

where L is a disconjugate linear operator of order n and p(x) is a continuous function in $[0, \infty)$. By the well known theorem of Polya [8], we may assume that the operator L is given by the factorization

$$L = \rho_{n+1} D\rho_n \cdots \rho_2 D\rho_1,$$

where $\rho_i \in C^{n-i+1}$ and $\rho_i > 0$ in $[0, \infty)$, i = 1,..., n+1. For short we denote $L_0 y = \rho_1 y$ and $L_i y = \rho_{i+1} D(L_{i-1} y)$, i = 1,..., n-1.

Let us assume that there is a nontrivial solution of Eq. (1) which vanishes at a and has at least n+k-1 zeros, k=1,2,..., in [a,x], x>a. The infimum of points x which has this property, exists. It is called the k-th conjugate point of a and is denoted by $\eta_k(a)$. Using compactness argument ([1]), one may easily show that if $\eta_k(a)$ exists then $\eta_k(a)>a$ and there is a solution which vanishes at a and at $\eta_k(a)$ and has at least n+k-1 zeros in $[a, \eta_k(a)]$. Such a solution is called an extremal solution for the interval $[a, \eta_k(a)]$.

The distribution of zeros of extremal solutions was investigated by Leighton and Nehari [4] for the equation

$$(ry'')'' + p(x)y = 0.$$

Hunt [2] considered the distribution of the zeros of solutions of the self-adjoint differential equation

$$(ry^{(n)})^{(n)} + p(x)y = 0.$$

448 URI ELIAS

Johnson [3] studied the same problem for Eq. (1) when L is an even order operator and $p(x) \leq 0$. In this paper, the order n of the operator L is arbitrary and we assume that p(x) has a constant sign. The main result is the following:

THEOREM 1. Let y(x) be an extremal solution of Eq. (1) for the interval $[a, \eta_k(a)]$. Then y(x) has exactly n + k - 1 zeros in $[a, \eta_k(a)]$. The only zeros of y(x) in $(a, \eta_k(a))$ are exactly k - 1 zeros of odd multiplicities. The zero at $\eta_k(a)$ is of odd or even multiplicity according to whether $p(x) \ge 0$ or $p(x) \le 0$. If $p(x) \le 0$ then y(x), L_1y ,..., $L_{n-1}y$ have no zeros in $(\eta_k(a), \infty)$ and if $(-1)^n p(x) \le 0$, then similar conclusion holds for [0, a).

This theorem will be used to establish the existence of solutions with given number of simple zeros and to prove some properties of $\eta_k(a)$ as a function of a.

2.

DEFINITION. Let y(x) be a solution of Eq. (1) which has at the points $x_1, ..., x_r$, $a = x_1 < \cdots < x_r = b$, zeros of multiplicities $m(x_1), ..., m(x_r)$, respectively. For the solution y(x) and the interval [a, b] we define (cf. [3]),

$$I - \{i \mid m(x_i) \text{ is even or } x_i - a \text{ or } x_i = b\},$$

$$J = \{j \mid a < x_j < b \text{ and } m(x_j) \text{ is odd}\},$$

$$M(y) = \sum_{i \in I} m(x_i) + \sum_{i \in I} [m(x_i) - 1]$$

We shall denote by $m(x_t, y)$ the multiplicity of the zero of the solution y(x) at x_t .

For the first two lemmas there is no need to assume that p(x) is of constant sign, so we assume that p(x) changes its sign l times in (a, b).

LEMMA 1. Every solution of Eq. (1) satisfies $M(y) \leq n + l$. Moreover, if M(y) = n + l, then $L_t y$ (t = 1,..., n - 1) has zeros only of the following types:

- (a) A zero at a point where y(x) has a zero of multiplicity bigger than t.
- (b) Exactly one simple zero between consecutive zeros of $L_{t-1}y$.

Proof. (Cf. [2]). We assume that y(x) has at the points $a = x_1 < \cdots < x_r = b$ zeros of multiplicities $m(x_1), \ldots, m(x_r)$. We denote the number of zeros of multiplicity bigger or equal to i by r_i . Evidently, $r_1 = r$ and $r_n = 0$. Now, $\sum_{i=1}^{n-1} r_i$ is the number of the zeros of y(x) in [a, b] counting multiplicities, since in the summation the zero at x_i is counted exactly $m(x_i)$ times.

 $L_0 y = \rho_1 y$ vanishes at r_1 different points of [a, b]. $L_1 y$ vanishes by Rolle's theorem at least at $r_1 - 1$ points between the r_1 points where $L_0 y$ vanishes, and at r_2 points where y(x) has a zero of multiplicity bigger than 1. Therefore $L_1 y$ vanishes at least at $r_1 + r_2 - 1$ different points of [a, b]. It follows similarly that $L_{n-2} y$ vanishes at least at $r_1 + \cdots + r_{n-1} - (n-2)$ different points of [a, b]. By Rolle's theorem, $L_{n-1} y$ changes its sign at least $r_1 + \cdots + r_{n-1} - (n-1)$ times in (a, b), and L y changes its sign at least $\sum_{i=1}^{n-1} r_i - n$ times.

Therefore p(x) y = -Ly changes its sign at least at $\sum_{i=1}^{r} m(x_i) - n$ different points of (a, b). Now, p(x) changes its sign l times in (a, b) and y(x) changes its sign at $|J| = \sum_{i \in J} 1$ points. Hence,

$$\sum_{I \cup J} m(x_i) - n \leqslant \sum_{J} 1 + l,$$

and the inequality $M(y) \leq n + l$ follows.

The equality M(y) = n + l occurs if and only if $L_t y$ (t = 1, ..., n - 1) vanishes exactly at $r_1 + \cdots + r_{t+1} - t$ different points. Among these points there are exactly r_{t+1} points where y(x) has a zero of multiplicity bigger than t and exactly $r_1 + \cdots + r_t - t$ zeros which are located by Rolle's theorem between the $r_1 + \cdots + r_t - (t - 1)$ points where L_{t-1} vanishes. Now the zeros which exist according to Rolle's theorem are simple. For, $L_{t+1} y$ vanishes at r_{t+2} points where y(x) has zeros of multiplicities bigger than t + 1, and at $r_1 + \cdots + r_{t+1} - (t + 1)$ points between the zeros of $L_t y$. If one of the $r_1 + \cdots + r_t - t$ zeros of $L_t y$ which exists according to Rolle's theorem were a multiple zero, then L_{t+1} would have an additional zero at this point. This is impossible since $L_{t+1} y$ vanishes exactly at $r_1 + \cdots + r_{t+2} - (t + 1)$ points.

Thus multiple zeros of $L_t y$ (t = 1, ..., n - 1) are located only at points where the preceding derivatives have multiple zeros. In particular $L_{n-2} y$ has exactly $\sum_{i=1}^{r} m(x_i) - (n-2)$ simple zeros in [a, b] since the zeros of y(x) are of multiplicity less than n. $L_{n-1} y$ has therefore exactly $\sum_{i=1}^{r} m(x_i) - (n-1)$ simple zeros, all of them in (a, b). Ly changes its sign by Rolle's theorem exactly $\sum_{i=1}^{r} m(x_i) - n$ times. Of course, Ly may have even order zeros in (a, b).

LEMMA 2. Let y(x) be a solution of Eq. (1) which satisfies M(y) = n + l in [a, b]. If p(x) < 0 (p(x) > 0) in a left neighborhood of b, then m(b) and n + l - m(a) are even (odd).

Proof. By Lemma 1, $L_t y$ does not vanish right of the last zero of $L_{t-1} y$ in [a, b]. Especially,

$$(L_0 y)(b) = \cdots = (L_{m(b)-1} y)(b) = 0,$$

and

$$(L_{m(b)}y)(b) \neq 0,...,(L_{n-1}y)(b) \neq 0.$$

We denote the last zero of $L_t y(m(b) \le t \le n-1)$ in [a, b] by β_t . By the previous observation

$$\beta_{n-1} \leqslant \beta_{n-2} \leqslant \cdots \leqslant \beta_{m(b)} < b.$$

The last zero of Ly in [a, b] is of course b. But if we denote the last of the $\sum_{i=1}^{r} m(x_i) - n$ changes of sign of Ly by β_n , then $\beta_n < \beta_{n-1}$. Hence p(x) y(x) has a constant sign in $[\beta_n, b]$ and especially in $[\beta_{n-1}, b]$.

We consider the case when p(x) < 0 in some left neighborhood of b. Without loss of generality we may assume that y(x) > 0 left to b, i.e., $(-1)^{m(b)}(L_{m(b)}y)(b) > 0$.

Integrating $\rho_{n+1}(x) D(L_{n-1}y) = -p(x) y(x)$ on (β_{n-1}, b) , we obtain

$$(L_{n-1}y)(b) = L_{n-1}y\Big|_{\beta_{n-1}}^b = \int_{\beta_{n-1}}^b -\frac{p(x)y(x)}{\rho_{n+1}(x)}dx > 0.$$

Therefore $L_{n-1}y > 0$ in $(\beta_{n-1}, b]$ and especially in $(\beta_{n-2}, b]$. By integrating $\rho_n(x)$ $D(L_{n-2}y) = L_{n-1}y$ on (β_{n-2}, b) , we obtain that $L_{n-2}y > 0$ on $(\beta_{n-2}, b]$. In a similar way we obtain that $(L_{m(b)}y)(b) > 0$. In view of $(-1)^{m(b)} (L_{m(b)}y)(b) > 0$, we deduce that m(b) is even. As M(y) = n + l and as $m(a) + m(b) \equiv M(y)$ (mod 2), it follows that m(b) and n + l - m(a) are of the same parity.

When p(x) > 0 in some left neighborhood of b, the proof is similar. The proof of the lemma is valid even if p(x) is not continuous at b but p(x) y(x) is integrable near b.

COROLLARY 1. Any oscillatory solution of Eq. (1) has a finite number of multiple zeros and infinitely many simple zeros.

This follows readily from the boundedness of M(y).

In the remainder of the paper we assume that p(x) is of a constant sign. For convenience we restate Lemma 1 and Lemma 2 for that case.

LEMMA 3. Let p(x) be of a constant sign. For every solution y(x) of Eq. (1), $M(y) \le n$. If M(y) = n then m(b) and n - m(a) are odd (even) when $p(x) \ge 0$ ($p(x) \le 0$).

COROLLARY 2. Let $p(x) \leq 0$ and let y(x) be a solution of Eq. (1) such that M(y) = n in [a, b]. Then none of the functions $L_0 y, L_1 y, ..., L_{n-1} y$ vanishes in (b, ∞) and all of them have the same sign. For the special equation

 $y^{(n)} + p(x) y = 0, y, y', ..., y^{(n-1)}$ are all monotone and $|y(x)| \ge Ax^{n-1}$ when $x \to \infty$.

Proof. There is some neighborhood of b such that $L_t y$ ($0 \le t \le n-1$) do not vanish in it. Let c > b be the first point to the right of b such that one of the derivatives, say $L_s y$, vanishes at c. By the proof of Lemma 1, $L_s y$ vanishes at $r_1 + \cdots + r_{s+1} - s$ different points of [a, b] and also at c. We consider now Eq. (1) in [a, c]. $L_s y$ vanishes at $r_1 + \cdots + r_{s+1} - s + 1$ different points of [a, c] and therefore Ly changes its sign at least $\sum_{i=1}^r m(x_i) - n + 1$ times in (a, c), i.e., more times than in (a, b). But this is impossible since m(b) is even and p(x) y(x) does not change its sign in $(b - \epsilon, c)$.

If y(x) > 0 in (b, ∞) , then by the proof of Lemma 2 we see that $(L_t y)(b) \ge 0$ $(0 \le t \le n-1)$ and therefore all the functions $L_t y$ are strictly increasing. For the equation $y^{(n)} + p(x)y = 0$ we obtain by integration

$$y(x) \geqslant \sum_{t=m(b)}^{n-1} \frac{1}{t!} y^{(t)}(b) (x-b)^t.$$

If $(-1)^n p(x) \leq 0$, similar properties can be proved for [0, a).

Remark. If p(x) changes its sign at l points, all of them in (a, b), and p(x) < 0 near b, then the same property holds for every solution of Eq. (1) which satisfies M(y) = n + l. The proof is identical to that of Corollary 2.

COROLLARY 3. The sum of the multiplicaties of the zeros of a solution of Eq. (1) at s points does not exceed n + s - 2.

This follows by Lemma 3, since $\sum_{i=1}^{s} m(x_i) \leq M(y) + (s-2)$. For s=2, this was proved by Nehari [7], by applying generalized Wronskians. As a matter of fact, Theorems 3.2-3.4 of [7] may be proved by applying Lemma 3. Also Theorem 4 and 8 of Levin [5] are particular cases of Lemma 1 and Lemma 2.

Now we turn to the extremal solutions of Eq. (1). Like Johnson [3, Lemma 3] we prove the following.

LEMMA 4. If y(x) is an extremal solution for $[a, \eta_k(a)]$, then M(y) = n.

Proof. We prove that if y(x) is a solution of Eq. (1) in [a, b] such that M(y) < n, then there exists another solution of Eq. (1) with the same number of zeros in [a, b), hence y(x) is not an extremal solution.

First, we assume that $p(x) \ge 0$. Let y(x) have at the points $a = x_1 < \cdots < x_r = b$ zeros of multiplicities $m(x_1), \ldots, m(x_r)$ such that M(y) < n.

We consider the following M(y) boundary value conditions

$$u^{(t)}(x_i) = 0,$$
 $0 \le t \le m(x_i) - 1,$ $i \in I,$ $x_i \ne b,$ $u^{(t)}(x_j) = 0,$ $0 \le t \le m(x_j) - 2,$ $j \in J,$ $u^{(t)}(b) = 0,$ $0 \le t \le m(b) - 2,$ $u^{(m(b)-1)}(b) = 1,$

and add $n - M(y) \ge 1$ conditions. If n - m(a) is even, we add n - M(y) conditions at b:

$$u^{(t)}(b) = 0$$
, $m(b) \leqslant t \leqslant m(b) + n - M(y) - 1$.

If n - m(a) is odd, we add one condition at a and n - M(y) - 1 conditions at b:

$$u^{(m(a))}(a) = 0,$$
 $u^{(t)}(b) = 0,$ $m(b) \leqslant t \leqslant m(b) + n - M(y) - 2.$

This nonhomogeneous system of n boundary value conditions will be denoted by (B). Now, the associated homogeneous system (H) has only the trivial solution. Indeed, if (H) had a nontrivial solution v(x), then M(v) = n and n - m(a, v) would be even, thus contradicting Lemma 3. Therefore the nonhomogeneous system (B) has a unique solution which is denoted by $\bar{y}(x)$. $\bar{y}(x)$ has at b a zero exactly of multiplicity m(b, y) - 1 and $\bar{y}(x)$ and y(x) are thus linearly independent.

For every α , the solution $y_1(x) = y(x) + \alpha \overline{y}(x)$ has at x_i $(i \in I, x_i \neq b)$ a zero at least of multiplicity $m(x_i)$, at x_j $(j \in J)$ a zero at least of multiplicity $m(x_j) - 1$, and at b a zero exactly of multiplicity m(b) - 1. By Taylor's theorem it follows that for $|\alpha|$ sufficiently small, $y_1(x)$ has additional zeros in given neighborhoods of x_j $(j \in J)$ (possibly at x_j) and b. These zeros are simple for small α . Else, as $\alpha \to 0$, we would find that $y(x) = \lim_{\alpha \to 0} y_1(x)$ had at x_j a zero of multiplicity greater than $m(x_j)$. Moreover, if the sign of α is properly chosen, the simple zero near b will be to the left of b, in [a, b). $y_1(x)$ has in [a, b] the same number of zeros as y(x) and $M(y_1) < M(y)$.

By repeating a similar process m(b) times, we shift the zeros at b one by one to the left and obtain a solution which has in [a, b) the same number of zeros as y(x) has in [a, b].

When $p(x) \leq 0$ the proof is similar.

LEMMA 5. An extremal solution for $[a, \eta_k(a)]$ has exactly n + k - 1 zeros in this interval.

Proof. Let us assume on the contrary that an extremal solution y(x) has at least n + k zeros in $[a, \eta_k(a)]$. The zero of y(x) at $\eta_k(a)$ is not simple, otherwise y(x) would have n + k - 1 zeros in $[a, \eta_k(a))$. We consider now the following M(y) - 2 = n - 2 boundary value conditions:

$$egin{align} u^{(t)}(x_i) &= 0, \qquad 0 \leqslant t \leqslant m(x_i) - 1, \qquad i \in I, \quad x_i \neq \eta_k(a), \ u^{(t)}(\eta_k(a)) &= 0, \qquad 0 \leqslant t \leqslant m(\eta_k(a)) - 3, \ u^{(t)}(x_j) &= 0, \qquad 0 \leqslant t \leqslant m(x_j) - 2, \qquad j \in J. \end{split}$$

This problem has a nontrivial solution $\bar{y}(x)$, linearly independent of y(x).

Assume that $\bar{y}(x)$ has at $\eta_k(a)$ a zero exactly of multiplicity $m(\eta_k(a)) - 2$. Then for $|\alpha|$ sufficiently small and α of suitable sign, the solution $y_1(x) = y(x) + \alpha \bar{y}(x)$ has at $\eta_k(a)$ a zero of multiplicity $m(\eta_k(a)) - 2$ and two simple zeros to the right and to the left of $\eta_k(a)$. Moreover, $y_1(x)$ has simple zeros near each x_j $(j \in J)$. By simple count we find that y(x) has at least n + k - 1 zeros in $[a, \eta_k(a)]$ and $M(y_1) = n - 2$, contradicting Lemma 4.

If $\bar{y}(x)$ has at $\eta_k(a)$ a zero of multiplicity $m(\eta_k(a)) - 1$, then similarly $y_1(x) = y(x) + \alpha \bar{y}(x)$ has at least n + k - 1 zeros in $[a, \eta_k(a)]$ and $M(y_1) = n - 1$.

If $\bar{y}(x)$ has at $\eta_k(a)$ a zero of multiplicity $m(\eta_k(a))$ or more, then there is a linear combination of $\bar{y}(x)$ and y(x) such that $M(c_1y + c_2\bar{y}) > n$, yielding again a contradiction.

As a result of Lemma 5, we conclude that $\eta_k(a) < \eta_{k+1}(a)$.

LEMMA 6. Every extremal solution for $[a, \eta_k(a)]$ has exactly k-1 zeros of odd multiplicity and no zero of even multiplicity in $(a, \eta_k(a))$.

Proof. Every extremal solution for $[a, \eta_k(a)]$ satisfies

$$\sum_{I \cup J} m(x_t) = n + k - 1, \qquad \sum_{I} m(x_i) + \sum_{J} [m(x_j) - 1] = n.$$

Therefore |J| = k - 1 and every extremal solution has exactly k - 1 zeros of odd multiplicity in $(a, \eta_k(a))$. Assume now that an extremal solution y(x) has in $(a, \eta_k(a))$ a zero x_s of even multiplicity $(s \in I, x_s \neq a, \eta_k(a), m(x_s) \ge 2)$. In the system

$$u^{(t)}(x_i) = 0,$$
 $0 \le t \le m(x_i) - 1,$ $i \in I, i \ne s,$ $u^{(t)}(x_s) = 0,$ $0 \le t \le m(x_s) - 3,$ $u^{(t)}(x_j) = 0,$ $0 \le t \le m(x_j) - 2,$ $j \in J,$

454 URI ELIAS

there are $\sum_{i\neq s} m(x_i) + [m(x_s) - 2] + \sum_J [m(x_j) - 1] = M(y) - 2 = n - 2$ boundary value conditions. This system has a nontrivial solution $\bar{y}(x)$ linearly independent of y(x). We now obtain the desired contradiction as in Lemma 5, by considering the multiplicity of the zero of $\bar{y}(x)$ at x_s .

Lemmas 5, 6 and 3 and Corollary 2 yield the assertions of Theorem 1.

Remark. It is well known [7, 6] that every linear differential equation of order n has an extremal solution for $[a, \eta_1(a)]$ which is positive in $(a, \eta_1(a))$. For Eq. (1), every extremal solution for $[a, \eta_1(a)]$ has this property.

3.

THEOREM 2. If a solution of Eq. (1) has m ($m \ge n$) zeros (counting multiplicities) in an open or a half open interval, then there exists a solution of Eq. (1) with at least m simple zeros in the same interval.

Proof. If a solution of Eq. (1) has m = n + k - 1 zeros in [a, b) then $\eta_k(a) < b$ and an extremal solution of Eq. (1) has the same number of zeros in $[a, \eta_k(a)] \subset [a, b)$. Therefore it is sufficient to prove that for every $\epsilon > 0$, there exists a solution with n + k - 1 simple zeros in $[a, \eta_k(a) + \epsilon)$. A priori we select $\epsilon > 0$ such that $\eta_k(a) + \epsilon < \eta_{k+1}(a)$.

Let y(x) be an extremal solution for $[a, \eta_k(a)]$. The system

$$u^{(t)}(x_i)=0, \qquad 0\leqslant t\leqslant m(x_i,y)-1, \qquad i\in I, \quad x_i\neq \eta_k(a),$$
 $u^{(t)}(\eta_k(a))=0, \qquad 0\leqslant t\leqslant m(\eta_k(a))-3,$ $u^{(t)}(x_i)=0, \qquad 0\leqslant t\leqslant m(x_i)-2,$

of n-2 boundary value conditions has a non-trivial solution $\bar{y}(x)$ which is linearly independent of y(x). As in the proof of Lemma 5, it is easy to see that if $\bar{y}(x)$ has at $\eta_k(a)$ a zero of multiplicity greater than $m(\eta_k(a)) - 2$, then some linear combination of y(x) and $\bar{y}(x)$ will lead to a contradiction. Therefore $\bar{y}(x)$ has at $\eta_k(a)$ a zero exactly of multiplicity $m(\eta_k(a)) - 2$. As in Lemma 5, we find that for suitable α_1 , the solution $y_1(x) = y(x) + \alpha_1 \bar{y}(x)$ has at least n + k - 1 zeros in $[a, \eta_k(a) + \epsilon)$. Since $\eta_k(a) + \epsilon < \eta_{k+1}(a)$, $y_1(x)$ has exactly n + k - 1 zeros in $[a, \eta_k(a) + \epsilon)$. $y_1(x)$ has more simple zeros than y(x), and $M(y_1) < M(y) = n$.

Now, as in the proof of Lemma 4, we define successively $y_2(x) = y_1(x) + \alpha_2 \bar{y}_1(x)$, $y_3(x) = y_2(x) + \alpha_3 \bar{y}_2(x)$,..., such that each $y_t(x)$ has exactly n + k - 1 zeros in $[a, \eta_k(a) + \epsilon)$ and $y_t(x)$ has more simple zeros than $y_{t-1}(x)$. After a finite number of steps we obtain a solution $y_q(x) = y(x) + \alpha_1 \bar{y}(x) + \cdots + \alpha_q \bar{y}_{q-1}(x)$ which has exactly n + k - 1 simple zeros in $[a, \eta_k(a) + \epsilon)$.

When $m(\eta_k(a)) = 1$, we begin the proof by splitting the rightmost multiple zero of y(x). For the intervals of the form (a, b) and (a, b] the proof is similar.

Applying Theorem 2, we shall prove the following:

THEOREM 3. $\eta_k(\cdot)$ is a strictly increasing continuous function which is defined on an interval of the form [0, b), $0 \le b \le \infty$.

For the proof we require the following lemmas.

LEMMA 7. If $\eta_k(a)$ exists, the function η_k is defined and continuous in some neighborhood of a.

Proof. By Theorem 2 there is a solution y(x) of Eq. (1) with n+k-1 simple zeros in $[a, \eta_k(a) + \epsilon)$, the first of which is at a. Let u(x) be the solution of Eq. (1) which satisfies at c the initial value conditions $u^{(i)}(c) = y^{(i)}(a)$, i = 0, 1, ..., n-1. The solutions of Eq. (1) are continuously dependent on the initial conditions. Therefore, if |c-a| is sufficiently small, y(x) and u(x) are close and u(x) has at least n+k-1 zeros in $[c, \eta_k(a) + \epsilon)$, the first of which is c. Thus η_k exists in a neighborhood of a. Moreover, by definition, when $|c-a| < \delta_1$ then $\eta_k(c) < \eta_k(a) + \epsilon$. By interchanging the roles of a and c, we get $\eta_k(a) < \eta_k(c) + \epsilon$ when $|c-a| < \delta_2$. These inequalities prove the continuity of η_k .

LEMMA 8. If η_k is defined in an interval, it is strictly increasing there.

Proof. First we show that if η_k is defined at a, then it is strictly increasing in some left neighborhood of a. Indeed, as in Theorem 2, one can show that for given ϵ_1 , there is a solution with at least n+k-1 simple zeros in $(a-\epsilon_1,\eta_k(a)]$ and the first of these zeros is in $(a-\epsilon_1,a)$. This solution is given by $v(x)=y(x)+\alpha_0\bar{y}(x)+\alpha_1\bar{y}_1(x)+\cdots+\alpha_m\bar{y}_m(x)$ and as the parameters α_0 , α_1 ,..., α_m vary continuously, its first zero covers some left neighborhood $(a-\epsilon_2,a)$ of a. This means that for every $c \in (a-\epsilon_2,a)$ there is a solution which vanishes at c and has n+k-1 simple zeros in $[c,\eta_k(a)]$. This solution is not an extremal one since it has n+k-1 simple zeros, therefore $\eta_k(c)<\eta_k(a)$.

Now, if a function is continuous in an interval and is strictly increasing in a left neighborhood of each point, it is strictly increasing in the whole interval.

LEMMA 9. If $\eta_k(a)$ exists, η_k is defined on [0, a].

Proof. By the proof of Lemma 8, η_k is defined in some open interval A containing a. Let $a' = \inf A$. Then a' < a and η_k is defined in (a', a] and

456 URI ELIAS

strictly increasing there. In (a', a] we choose a decreasing convergent sequence $a_i \downarrow a'$. Then the decreasing sequence $\eta_k(a_i)$ converges and there is a sequence of extremal solutions $y_i(x)$ such that $y_i(x)$ vanishes at a_i and has n+k-1 zeros in $[a_i, \eta_k(a)]$. We choose a subsequence of $y_i(x)$ which converges together with its derivatives. Its limit function is a solution of Eq. (1) which vanishes at a' and has n+k-1 zeros in $[a', \eta_k(a)]$. Thus $\eta_k(a')$ exists. If a'>0, then by Lemma 7, η_k is defined in a neighborhood of a', contradicting the definition of a'.

This completes the proof of Theorem 3.

In the definition of $\eta_k(a)$ we considered only those solutions of Eq. (1) which vanish at a. Now we see that this restriction in the definition is not necessary. Indeed, assume that there is a solution of Eq. (1) with n+k-1 zeros in $[a, \eta_k(a)]$ such that its first zero in the interval is c > a. Then by definition $\eta_k(c) \le \eta_k(a)$ and this contradicts Theorem 3. This observation is stated now as

COROLLARY 4. No solution of Eq. (1) has n + k - 1 zeros in $(a, \eta_k(a)]$ or in $[a, \eta_k(a))$.

We conclude the paper with the following corollary:

COROLLARY 5. If p(x) > 0 (or p(x) < 0), then $\eta_k(a)$ is a continuous function of p(x).

Proof. Assume $0 \le p(x) - \delta \le p_1(x) \le p(x) + \delta$. Let y(x) be a solution of Eq. (1) which has n + k - 1 simple zeros in $[a, \eta_k(a) + \epsilon]$ and $y_1(x)$ the solution of the equation

$$Ly_1 + p_1(x) y_1 = 0,$$

which satisfies

$$y_1^{(t)}(a) = y^{(t)}(a), \quad 0 \le t \le n-1.$$

The solutions of Eq. (1) are continuously dependent on the coefficient p(x). Therefore, for δ sufficiently small, $y_1(x)$ has at least n + k - 1 zeros in $[a, \eta_k(a) + \epsilon)$. The continuity of $\eta_k(a)$ as a function of p(x) follows now as in Lemma 7.

ACKNOWLEDGMENT

The author is greatly indebted to the late Professor M. Lavie and to Professor B. Schwarz for their help in the preparation of this paper.

REFERENCES

- M. Hanan, Oscillation criteria for third order linear differential equations, Pacific J. Math. 11 (1961), 919-944.
- 2. R. W. Hunt, Oscillation properties of even order linear differential equations, Trans. Amer. Math. Soc. 115 (1965), 54-61.
- 3. G. W. Johnson, The k-th conjugate point function for an even order linear differential equation, *Proc. Amer. Math. Soc.* 42 (1974), 563-568.
- 4. W. LEIGHTON AND Z. NEHARI, On the oscillation of solutions of self-adjoint linear differential equation of fourth order, Trans. Amer. Math. Soc. 89 (1958), 325-377.
- 5. A. Ju. Levin, Distribution of the zeros of solutions of a linear differential equation, Soviet Math. Dokl. 5 (1964), 818-821.
- 6. A. Ju. Levin, Non oscillation of solutions of the equation $x^{(n)} + p_1 x^{(n-1)} + \cdots + p_n x = 0$, Russian Math. Surveys 24 (1969), 43-99.
- 7. Z. Nehari, Disconjugate linear differential operators, Trans. Amer. Math. Soc. 129 (1967), 500-516.
- 8. G. Polya, On the mean value theorem corresponding to a given linear homogeneous differential equation, *Trans. Amer. Math. Soc.* 24 (1924), 312-324.