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ABSTRACT. If every solution of an nth order linear differential equation has
only a finite number of zeros in [0, o), it is not generally true that for
sufficiently large ¢, ¢ > 0, every solution has at most n — 1 zeros in [c, o).
Settling a known conjecture, we show that for any n, the above implication
does hold for a special type of equation, L,y + p(x)y = 0, where L, is an
nth order disconjugate differential operator and p(x) is a continuous
function of a fixed sign.

Introduction. An nth order linear differential equation

¢} YW+ pi(x)pV 4+ p(x)y =0

is said to be disconjugate on an interval E if every one of its nontrivial
solutions has at most n — 1 zeros in E (counting multiplicities). The equation
is called nonoscillatory on E if every solution has only a finite number of zeros
in E.

Assume that every solution of (1) has only a finite number of zeros in
E = [0, o). Does there exist a half line [a, o), a > 0, in which every solution
of (1) has at most n — 1 zeros? That is, does nonoscillation imply eventual
disconjugacy. Generally, the answer is negative [4]. However, this statement
holds for special types of equations, e.g.,

(") +py =0, [5]
y™ +py =0 forevenn, [9].

We prove that nonoscillation implies eventual disconjugacy for a larger
family of equations. Consider

©)] Ly + p(x)y =0,

where L, is an nth order disconjugate differential operator and p(x) is a
continuous function of a fixed sign on [0, o0) for an arbitrary ».

THEOREM 1. If equation (2) is nonoscillatory on [0, o), it is eventually
disconjugate.

Theorem 1 settles a well-known conjgcture [7].

The ith conjugate point, 1,(a), is defined as the infimum of the values b,
such that there exists a solution of (1) which vanishes at a and has at least
n — 1+ i zeros in [a, b). In particular, 7,(a@) = n(a) is the infimum of values
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b, such that (1) is not disconjugate on [a, b].

THEOREM 2. For equation (2), the following properties are equivalent:
(1) The equation has a solution with infinitely many zeros in [0, ).
(2) n,(a) exists for every a.

(3) For a fixed c, n;(c) exists for every i.

Similar results have been proved in [3] and [10] for (1) under the
assumption that no solution has on [0, o) a set of zeros of multiplicities 1,
I,...,1(¢g—1 times), 2, 1, 1,...,1 (n — g — 1 times) respectively, and
some more assumptions. However, equations of type (2) do not necessarily
satisfy this assumption for n > 5. For, choose k, 1 < k < n — 3, such that
(= 1)"*p(x) < 0 and denote by »» the eigenfunction of L,y + Ap(x)y =0
which corresponds to the n boundary conditions Ly(a) =0,¢t=0,...,k —
1, Lyy(b)=L,y(b)=0, Ly(¢c)=0, t=0,...,n— k-3, a<b<ec.
Given two arbitrary numbers /, m, then for a sufficiently large positive
eigenvalue A, the eigenfunction y, has at least / and m simple zeros in (a, b)
and (b, c) respectively [2, Theorem 2].

Proofs. It is well known that a disconjugate operator L, can be written as

(€)) Ly = pu(Pu-r - - (P1(Po¥)) - .Y,

where p;, > 0, p,.€ C",i =0,...,n. The factorization (3) is not unique. It
is known [11], that p,, . . ., p,_, can be chosen so that they satisfy

© dx .
4) f p,.(x)_oo’ i=1,...,n—1.
In the following, we assume that L, has the representation (3) which satisfies
(4). We denote

Lyy = poy, Ly =p,(L;,_,»y), i=1...,n
Lyy, ..., L,y are called the quasi-derivatives of y.

Let y be a solution of (2). We arrange the n quasi-derivatives
Lyy,..., L, ,yin a cyclic order, so that L,_, y is followed by L,y (cf. [1]).
Leta < x; < --- < x,=b be the zeros of Lyy,..., L, ,y in a certain
interval, so that common zeros of consecutive quasi-derivatives will be
considered as multiple zeros, but distinct subscripts will be used for zeros of
nonconsecutive quasi-derivatives at the same point. Let the number of
consecutive quasi-derivatives which vanish at x; be denoted by n(x,). The
total number of (not necessarily consecutive) quasi-derivatives of y which
vanish at a point ¢ will be denoted by »(c). Obviously, r(c) = 2, =cn(x). In
Lemma 1 of [1], the following restriction about the distribution of the zeros of
Lyy,...,L,_,y isproved:

LEMMA 1. Every solution of (2) satisfies
def

) N(») Egn('xi) + ? [n(x) = 1] < n,
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where
I = {i|x, = aorx;=born(x)iseven},
J = {jla < x; < band n(x;) is odd }.

If N(») = n, then v(b) and n — v(a) are both even if p(x) < 0 and both odd if
p(x)>0.

PrROOF OF THEOREM 1. Assume that (2) is not eventually disconjugate, i.c.,
n(a) = n,(a) exists for every a. It is well known [6], [8] that there exists an
appropriate solution of (2) which has zeros of multiplicities k and n — k,
1 < k < n — 1, at a and n(a) respectively and does not vanish on (a, n(a)). k
depends on a and it is not necessarily unique. However, n — k is even if
p(x) < 0and odd if p(x) > 0, i.e,,

©) (=1 *p(x) <.

Since only a finite number of values of k is possible, we choose a sequence
{a;}, a; > 0, so that for each g, corresponds the same index k = k(g;). For
this k and an arbitrary c, let y(x, s) be the solution of (2) which satisfies

@) Ly(c)=0, t=0,..., k-1,
®) Ly(s)=0, t=0,...,n— k-2, s>c.

y(x, s) is essentially unique. If there are two independent solutions which
satisfy (7)~(8), then there is a linear combination y, which has an additional
quasi-derivative that vanishes at ¢. This y satisfies »(c) > k + 1, »(s) > n —
k —1and N(y) < n, hence v(c) = k + 1, »(s) = n — k — 1. So, by (6), v(s)
is odd if p(x) < 0 and even if p(x) > 0, in contradiction of Lemma 1.

We prove certain properties of y(x, s). First, no quasi-derivative of y(x, s),
except those which are given in (7), can vanish at x = ¢. For »(¢) > k + 1,
v(s) > n — k — 1 is impossible according to the above argument.

L,y(x, s) may have only simple zeros in (c, s). Otherwise, we would have
N@y(x,s) > k+ 2+ (n— k — 1) > n, that contradicts (5).

Let {u,, ..., u,} be an independent set of solutions of (2). Then y(x, s) is
essentially given by the determinant
Louy(€), - -+ s L_yuy(e),  Louy(s), - o5 Lyjegty (5), ()
LOun(c)’ crc Lk—lun(c)’ LOun(S)’ MR Ln—k—Zun(S)’ un(x)

Of course, the determinant is a solution of (2) which satisfies (7) and (8). We
have only to show that it is not the trivial solution. If it were identically zero,
the submatrix consisting of the first » — 1 columns would be of rank less than
n — 1. This would contradict the uniqueness proved before of the solution
which satisfies (7) and (8). By this representation and the implicit functions
theorem it follows that the simple zeros of Ly(x,s), t=0,...,n — 1, are
differentiable functions of s.
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By the former stated properties of y(x, s) we conclude, that as s varies, two
simple zeros of L,y(x, s) cannot meet in (c, s) and no zero can meet the
endpoint ¢. So, since the zeros of Ly(x, s) are differentiable functions of s,
their number can vary, as s varies, only when a simple zero enters or leaves
(c, s) through the endpoint s.

We shall prove that as s — oo, the number of zeros of y(x, s) in (c, s) tends
to infinity and each of these zeros is a bounded function of s. This will imply
that the limit function lim__, _ y(x, s) has infinitely many zeros in [c, o0).

Assume that as s » oo, Lyy(x, s),..., L,_,y(x, s) have only a finite
number of zeros, if any, in (¢, s), which are bounded from above as functions
of 5. Let M — 1 be their common upper bound. The other zeros (if any) are
unbounded. Let {s;} be such a sequence that the unbounded zeros of Ly (x,
s;) tend to infinity as s; —» oo0. By Rolle’s theorem, the unbounded zeros of
Liy(x,s),...,L,_;y(x,s;) also tend to infinity. We normalize the solutions

y(x9 si) by

n—1

go [LJ’(M’ Si)’]2= L

The so-normalized family { y(x, s;)} is a compact set of solutions and it is
possible to choose a subsequence {s, }, s, — o0, and a nontrivial solution v so
that Ly (x, 5, )—>Lv,t=0,...,n, Iunifé)rmly on compact intervals.

The zeros of Lyy(x, s;),..., L, ,y(x, s;) in [M, s;) (if any) tend to
infinity as s, —> oo and their other zeros are in (¢, M = 1]. Hence Lyy(x,
5, ). L, y(x, 5, ) do not vanish on an arbitrary large right neighborhood
of M — 1, provided s, is sufficiently large. Therefore, the quasi-derivatives of
v= limsy_m y(x, ;) do not change their signs on (M — 1, o). So they are
monotone on (M — 1, o0) and in fact they do not vanish on [M, c0).

Let ¢ be the greatest index, 1 < ¢ < n, so that the two consecutive
quasi-derivatives L,_,v, L v are of the same sign, say positive, on [M, ), if
such an index exists. Since L,v >0, L,_,v increases, so by (4),

L,_yv(x) = L,_,o(M) +fMLq_lv/pq_, dx
> L,_o(M) + Lq_lv(M)fM dx/p,_, — +

as x — oo0. Since L,_,v does not vanish on [M, o), it is necessarily positive
there. Similarly, we have L,v > 0,7 =0, ..., ¢, x € [M, ). Since q is the
greatest index with the above property, (=1 9L,0 >0,1=g¢q,...,n, x €
[M, ). Ly(x, 5 )— Lo as 5, = 0, hence, for sufficiently large 8

©) Ly(M,s) >0, t=0,...,q
(10) (—l)t_thy(M’ S,-j) >0, t=gq,...,n.

We prove that ¢ = k. Assume that Lyy = p,y(x, 5, ) has / (/ > 0) simple
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zeros in (¢, M), say a;, . .., a;. By (7), L,y has at least / simple zeros in (c,
M), one in each of the intervals (¢, a;), (¢}, @), . . ., (a;_;, a;). Similarly, we
obtain that L, _,y has at least / zeros in (¢, M), say By, ..., B;. L,y has at
least one simple zero in each of the intervals (c, B,), ..., (B,_y, B). But if

g < k — 1, then L.y has an additional simple zero in ( 8, M). For, if L,y has
a fixed sign on (8;,, M), then by (10) we have sgn[L,y] = —sgn[L,_,y] on
(B, M)and

M
Leery(B) = Ly (M) = [ "Ly /oy ds 70,
1

which is impossible. Thus L,y has at least / + 1 zeros in (¢, M). By repeated
use of (10), we obtain that L,y also changes its sign at least / + 1 times in (c,
M), i.e., more than y. This contradicts (2), so g > k.

To obtain an upper bound for ¢, we consider y(x, s,) in [M, s;]. If for a
certain t, 0 < t < ¢ — 1, we denote the first zero of Lylin (M, s,.‘]lby v, then
L,.,y has a simple zero in (M, y). Otherwise, by (9), Ly, L, Hly would be
positive on (M, y) and Ly(y) = Ly(M) + [YL,.,y/p,+1 dx > 0. By the
q + 1 conditions of (9), we may repeat this argument g times. Let y have /
simple zeros in (M, s;). After n differentiations we obtain by the above use of
(9) and on account of then — k — 1 boundary conditions of (8) at 5, that L,y
has at least / + ¢ + (n — k — 1) — n zeros in (M, s;). Since L,y = — py,
g< k+1 ’

We have proved that k < ¢ < k+ 1. But by (9)(10), Ly(M) =
(—=1y""9Lyy(M), and so (—1)""%(x) < 0. Thus, by (6), g and k are of the
same parity and so ¢ = k. Therefore

Lv >0, t=0,...,k,
(11) —k
(=D)L >0, t=k,...,n,

on [M, ).

Now we return to the conjugate points of (2). From the sequence {g,},
a; — o0, we choose an a, a;, > M, and denote it by a. Let u(x) be the
appropriate solution which satisfies

Lu(a) =0, t=0,...,k—1,
(12) Lu(n(a)) =0, t=0,...,n— k-1,

and let ¥ > 0 on (a, n(a)). We shall show that (11) and (12) are incompatible.
(It can be shown that (11) is equivalent to the absence of a focal point in the
sense of [9].)

u has exactly n zeros in [a, n(a)], therefore Lu, t = 0,...,n — |, has at
least n — ¢ zeros in [a, n(a)]. Since p,(L,_,u) = L,u = — pu and u > 0 on
(a, n(a)), Rolle’s theorem implies that L,u has exactly n — ¢ zeros in [a, 7(a)).
Let x, be the first zero of L,u in (a, n(a))]. Since L,u(n(a)) = — pu(n(a)) =0,
we define x, = n(a). Since L,u(a) =0,t =0, ..., k — 1, it follows that
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(13) a<x < x_<:: - <x<x5=1n(a).

Fort=k,...,n — 1, Lu has exactly n — ¢ zeros, all in (a, n(a)] and L, ,u
has exactly n — ¢t — 1 zeros. Therefore L, ,u has in (a, n(a)) exactly one zero
between two zeros of L,u and no other zeros. In particular, x,,, > x, and we
have

(14) a< x5 < x4 <--0 <x,_1 < x,=n(a).

Consider the solution w, = v — Au. For A =0, Lw,= Lo # 0 on [M,
) D [a, n(a)]. Let A, be the smallest positive value of A, such that for some ¢,
0 <7< n -1, Lw, vanishes in [a, x,]. No quasi-derivative L,w, changes its
sign on (a, x,). Otherwise, by continuity, L w, would change its sign for A
sufficiently close to Ay, contradicting the definition of A,. Therefore

(15) L,w,‘o>0, x Ela,x)t=0,...,k,
(—1)’_"L,w,‘o >0, x€E€la,x)t=k, ...,n
and at the endpoints
(16) Liwy(a) = Lv(a) >0, t=0,...,k—1,
(= l)t_kLtw)\o(xt) =(- l)t_kLtv(xt) >0, t=k,...,n—1L

We shall prove that (15) and (16) imply thatno L,w, ,0 <t < n — l,hasa
zero in [a, x,], and this contradicts the definition of Ay. For k < 1 < n — 1,
(= 1)'"*Lwy(x) > 0 and (= 1)'"*L,,,w, < 0 on [a, x,,,]. Since, by (14)
a<x, < x4, (=1 "‘L,w)\o is decreasing and nonvanishing on [a, x,].

For 0 < ¢ < k — 1, we show that L, ,,wy, > 0 on [a, x,]. On [a, x,,,]
L, 1w, is nonnegative by (15). As x,,; < x, for 0 < ¢ < k — 1, we consider
(%, 41, x,] separately. Since u > 0 on (a, n(a)), L, u is positive on (a, x,,,)
and changes its sign at x, ;. Therefore, on (x,,,, x,), L,,;# < 0 and we have
Ly yWay = Liyyv — AoLyyu > 0. Since Lw, (a) > 0, and L, ,;w, > 0 on [a,
x,], L,w,, increases and has no zeros on [a, x,].

The last contradiction proves that (11) and (12) are incompatible, and so
our assumption that y(x, s) has only a finite number of bounded zeros as
s — o0, is false. Therefore, as s — o0, the number of zeros of y(x, s) in (c, s)
increases indefinitely, and all of them are bounded from above. Since all
these zeros are also bounded from below by ¢, the solution lim__ . y(x, s) has
infinitely many zeros in [¢, 00). This completes the proof of Theorem 1.

PROOF OF THEOREM 2. Theorem 1 proves the implication (2) — (1). It also

proves (2) — (3), ‘pecause tne solution ‘iim,_, . y{x, §) vanisnes at ¢ and ‘nas
infinitely many zeros on [c, 0). (1) — (2) follows by the definition of 7(a)
and (3) — (2) is almost trivial. Assume that 7,(c) exists for every i and let y,(x)
have n — 1 + i zeros in [c, ;(c)]. Let a be an arbitrary point, a > c. Since (2)
has continuous coefficients, the number of zeros of any solution, in particular
y;(x), on [c, a] is bounded by an absolute constant. So, for sufficiently large i,
»i(x) has at least n zeros in [a, 7;,(c)] and n(a) exists.
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Theorem 1 enables us to use results about disconjugacy for problems of
nonoscillation. For example,
COROLLARY 1. Let P(x) > p(x) > 0or P(x) < p(x) < 0. If the equation
Ly+ P(x)y=0
is nonoscillatory, then also (2) is nonoscillatory.
This follows from the well-known fact that n(a, p) > n(a, P) [6), [8]).

Since a differential equation is disconjugate if and only if its adjoint is
disconjugate [8], their first conjugate points are equal and we have:

COROLLARY 2. Equation (2) is nonoscillatory if and only if its adjoint is
nonoscillatory.
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