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1. Introduction

The differential equation to be discussed is

(1) Lny + p(x)y = 0,

where p(x) is a continuous, one-signed function and Ln is a n-th order linear discon-
jugate differential operator on [0,∞). It is well known that a disconjugate operator
Ln can be written in the form

Lny = ρn(ρn−1 . . . (ρ1(ρ0y)′)′ . . .)′,

where ρi > 0, ρi ∈ Cn−i. We put

L0y = ρ0y, Liy = ρi(Li−1y)′, i = 1, . . . , n,

where L0y, . . . , Lny are called the quasi-derivatives of y.

We consider the following boundary conditions on the interval [a, s]:

(2)
Liy(a) = 0, i ∈ {i1, . . . , ik},

Ljy(s) = 0; j ∈ {j1, . . . , jn−k},

where {i1, . . . , ik}, {j1, . . . , jn−k} are two arbitrary sets of indices from {0, . . . , n−1}.

Definition. The i-th extremal point θi(a) corresponding to the boundary condi-
tions (2) is the i-th value of s in (a,∞) for which there exists a non-trivial solution
of (1), (2). The corresponding non-trivial solution is called an extremal solution.

It is well known [7] that a necessary condition for the existence of a non- trivial
solution of (1), (2) is that n− k is even if p(x) < 0 and n− k is odd if p(x) > 0. In
the following, we assume that this condition is satisfied, thus

(3) (−1)n−kp(x) < 0.
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Two systems of boundary conditions of type (2) play an important role in the
study of (1). For the boundary conditions

(4)
Liy(a) = 0, i = 0, . . . , k − 1,

Ljy(s) = 0, j = 0, . . . , n − k − 1,

which are equivalent to

(5)
y(i)(a) = 0, i = 0, . . . , k − 1,

y(j)(s) = 0, j = 0, . . . , n − k − 1,

θ1(a) is called a conjugate point of type (k, n− k); we shall denote it by ηk,n−k(a).
If ηk,n−k(a) does not lie in [a, b), a < b ≤ ∞, that is, if there is no nontrivial solution
which satisfies (4) for a < s < b, equation ( 1 ) is said to be (k, n− k)-disconjugate
in [a, b). This situation has been investigated in numerous papers (cf [1] [6] [9]).

For the boundary conditions

(6)
Liy(a) = 0, i = 0, . . . , k − 1,

Ljy(s) = 0, j = k, . . . , n − 1,

θ1(a) is called a focal point of type (k, n − k); it will be denoted by ζk,n−k(a). If
ζk,n−k(a) does not lie in [a, b), (1) is said to be (k, n − k)-disfocal in [a, b). The
function ζk,n−k(a) plays an important role in the study [9]. (In denoting conjugate
points by η and focal points by ζ, we have used the notation of [7] rather than that
of [9].)

A solution of (1) is called oscillatory on [0,∞) if it has an infinite number of
zeros. Equation (1) is said to be oscillatory if it has at least one oscillatory solution.

In this work we investigate the connection between the existence of extremal
points and the existence of oscillatory solutions. In order to state the main result, we
first introduce some notation. Let S(c0, . . . , cn) denote the number of sign changes
in the sequence c0, . . . , cn, whose elements are non-zero real numbers. Moreover,
we write

S(y, a+) = lim
x↓a

S
(

L0y(x),−L1y(x), . . . , (−1)nLny(x)
)

S(y, b−) = lim
x↑b

S
(

L0y(x), L1y(x), . . . , Lny(x)
)

It is easy to show that if Lny(a) 6= 0, then

S(y, a+) = S+
(

L0y(a), . . . , (−1)nLny(a)),

where S+ denotes the maximal number of sign changes achievable by appropriate
choice of signs for the zero entries (if any). In Lemma 5 we show that

For every solution y of (1), S(y, x+) is constant for sufficiently large values of
x. If S(y, x+) ≡ q on (c,∞), 0 ≤ q ≤ n, then S(y, x−) ≡ n − q on (c,∞) and
(−1)n−kp(x) < 0.
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Our main result may be stated.

Theorem I. For equation (1), the following properties are equivalent:
(1) A conjugate point ηk,n−k(a) exists for every a ≥ 0.
(2) There exists a system of boundary conditions of type (2) and a value of a such
that all the extremal points θi(a), i = 1, 2, . . ., exist.
(3) For every system of boundary conditions of type (2) and for every value of a ≥ 0,
all the extremal points θi(a), i = 1, 2, . . ., exist.
(4) There exists an oscillatory solution y such that S(y, x+) ≡ k for sufficiently
large values of x.
(5) Every solution for which S(y, x+) ultimately has the constant value k is an
oscillatory solution.

Theorem I is proved in Section 3. In Section 2 we prove certain preliminary
results.

2. Basic properties of (1)

Let y be a solution of (1). As in [2], we arrange the n quasi-derivatives L0y, . . . ,
Ln−1y in a cyclic order, so that Ln−1y is followed by L0y. Let a ≤ x1 ≤ · · ·xr ≤ b
be the zeros of L0y, . . . , Ln−1y in a certain interval, common zeros of consecutive
quasi-derivatives being considered as multiple zeros (distinct subscripts will be used
for common zeros of non-consecutive derivatives). Let the number of consecutive
quasi-derivatives which vanish at xi, be denoted by n(xi). In Lemma 1 of [2] it
is proved that the distribution of the zeros of L0y, . . . , Ln−1y is restricted by the
inequality

(7)
∑

I

n(xi) +
∑

J

[n(xj) − 1] < n,

where
I = {i|xi = a or xi = b or n(x ) is even},

J = {j|a < xj < b and n(xj) is odd }.

Inequality (7) may be re-written as

(8)
∑

xt=a,b

n(xt) +
∑

a<xt<b

〈n(xt)〉 ≤ n,

where < q > denotes the greatest even integer which is not greater than q.

Lemma 1. Every solution y of (1) satisfies the condition

(9) N(y) ≡ S(y, a+) + S(y, b−) +
∑

a<xt<b

〈n(xt)〉 ≤ n.

Moreover S(y, b−) and n − S(y, a+) are both even if p(x) < 0 and both odd if
p(x) > 0. If N(y) = n, then Lt+1y has exactly one sign change between two
consecutive zeros of Lty in [a, b]. In addition Lt+1y changes sign before the first
zero of Lty in (a, b] if and only if sgn[Lt+1y(a + ε)] = sgn[Lty(a + ε)], and this sign
change is unique. The situation is similar near the endpoint b.
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Proof. First we note that (9) implies (8) and (7). Indeed if Lty(a) = 0, then
sgn[Lt+1y(a+ε)] = sgn[Lty(a+ε)] for sufficiently small positive ε, and if Lty(b) = 0
then sgn[Lt+1y(b − ε)] = −sgn[Lty(b − ε)]. Thus

S(y, a+) ≥
∑

xi=a

n(xi), S(y, b−) ≥
∑

xi=b

n(xi).

The rest of the proof is similar to that of Lemma 1 of [2]. Among the zeros {xi}
of L0y, . . . , Ln−1y, let {xi,t} be the zeros of Lty which are not zeros of Lt−1y. Here
n(xi,t) is the exact number of consecutive quasi-derivatives which vanish at x:

Lsy(xi,t) = 0, t ≤ s ≤ t + n(xi,t) − 1.

Let γt be the sum of the number of consecutive quasi-derivatives, starting with
Lty, which vanish in [a, b]. If m1, . . . , mq consecutive quasi-derivatives , starting
with Lt−1y , vanish respectively at the points a ≤ z1 < · · · < zq ≤ b, then γt−1 =
m1 + · · ·+mq . At the same points, m1−1, . . . , mq −1 consecutive quasi- derivatives
respectively vanish, starting with Lty. Additionally, Lty has

∑

n(xi,t) zeros in [a, b]
which are not zeros of Lt−1y. There

γt = (ml − l) + · · ·+ (mq − 1) +
∑

n(xi,t) = γt−1 +
∑

n(xi,t) − q.

In each of the q − 1 intervals (z1, z2), . . . , (zq−1, zq), Lty changes its sign by Rolle’s
theorem. Hence Lty has at least q − 1 zeros xi,t in (z1, zq) for which n(xi,t) is odd.
If for every xi,t ∈ (zl, zq) we replace n(xi,t) by the greatest even integer which is
not greater than n(xi,t), we obtain

(10) γt ≥ γt−1 +
∑

[a,zl)∪(zq,b]

n(xi,t) +
∑

(z1,zq)

〈n(xi,t)〉 − 1.

If sgn[Lty(a+ε)] = sgn[Lt−1y(a+ε)], ǫ > 0, then Lty has at least one zero in (a, z1)
for which n(xi,t) is odd. Otherwise, Lty would be one-signed in (a, z1) and so

Lt−1y(z1) = Lty(a) +

∫ z1

a

Lty/ρt dx 6= 0.

In particular, this is the case when Lt−1y(a) = 0. In a similar fashion, if
sgn[Lty(b−ε)] = −sgn[Lt−1y(b−ε)] (especially when Lt−1y(b) = 0), Lty has a zero
in (zq, b) with odd n(xi,t). Hence (10) may be rewritten

(11)

γt ≥ γt−1 + S(Lt−1y(a + ε),−Lty(a + ε))

+ S(Lt−1y(b − ε), Lty(b − ε)) +
∑

(a,b)

〈n(xi,t)〉 − 1.

Observe that (11) holds even if Lt−1y has no zero in [a, b]. Since ρn(Ln−1y)′ =
Lny = −py, we have similarly

(12)

γ0 ≥ γn−1 + S(Ln−1y(a + ε),−Lny(a + ε))

+ S(Ln−1y(b − ε), Lny(b − ε)) +
∑

(a,b)

〈n(xi,0)〉 − 1.
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Adding inequalities (11), for t = l, . . . , n − 1 , and (12) we obtain

n > S(L0y(a + ε),−Lly(a + ε), . . . , (−1)nLny(a + ε))

+ S(L0y(b − ε), . . . , Lny(b − ε)) +
∑

a<xi<b

〈n(xi)〉

for sufficiently small positive ε (for which all the quasi-derivatives above are non-
zero). This proves (9).

If N(y) = n, then none of the inequalities in (11) and (12) can be strict. This
proves our assertion about the location of sign changes of the quasi-derivatives.
The parities of S(y, b−) and n − S(y, a+) are easily determined by counting the
sign changes in the sequences L0y = ρoy, L1y, . . . , Lny = −py and L0y,−L1y, . . . ,
(−1)nLny.

To investigate the extremal solutions corresponding to (2), we consider solutions
of (1) which satisfy only n − 1 of the boundary conditions of (2), the condition
Ljn−k

y(s) = 0, say, being deleted.

Lemma 2. When only n − 1 boundary conditions

(13)
Liy(a) = 0, i ∈ {i1, . . . , ik},

Ljy(s) = 0, j ∈ {jl, . . . , jn−k−1}

are considered, the following results hold:
(1) Equation (1) has an essentially unique solution y(x, s) satisfying (13).
(2) At the endpoint a we have S(y(x, s), a+) = k and sgn[Li+1y(a + ε, s)] =
sgn[Liy(a + ε, s)] if and only if i ∈ {i1, . . . , ik}. In particular, no quasi-derivatives
other than those specified in (13) vanish at a.
(3) At the endpoint s, we have S(y(x, s), s−) = n − k and n − k − 1 of the sign
changes among consecutive quasi-derivatives are determined by j1, . . . , jn−k−1. At
most one quasi-derivative may vanish at s, in addition to those specified in (13).
(4) S(y(x, s), x+) ≡ k for x ∈ [a, s) and S(y(x, s), x−) ≡ n − k for x ∈ (a, s].
(5) Lty(x, s), t = 0, . . . , n − 1, may have only simple zeros in (a, s). Lt+1y(x, s)
has exactly one simple zero between two consecutive zeros of Lty in [a, s].
(6) Lty(x, s) and its simple zeros are differentiable as functions of s.

Proof. The boundary conditions (13) imply that

sgn[Li+1y(a + ε)] = sgn[Liy(a + ε)], i ∈ {i1 . . . , ik},

sgn[Lj+1y(s − ε)] = −sgn[Ljy(s − ε)], j ∈ {j1, . . . , jn−k−1}

for sufficiently small positive ε. Hence if y satisfies (13), we have S(y, a+) ≥ k and
S(y, s−) ≥ n − k − 1.

If there are two independent solutions y1, y2 which satisfy (13), there will exist
a linear combination y = c1y1 + c2y2, which has an additional quasi-derivative that
vanishes at a. This solution satisfies N(y) = n, S(y, a+) = k + 1, and S(y, s−) =
n − k − 1. By assumption (3), S(y, s−) is odd if p(x) < 0 and even if p(x) > 0,
contradicting Lemma 1. This establishes the uniqueness of y = y(x, s).
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By the previous remark we have S(y, a+) ≥ k and S(y, s−) ≥ n − k − 1; ac-
cording to (9), also S(y, a+) + S(y, s−) ≤ n. Properties (2) and (3) are immediate
consequences of these inequalities: otherwise Lemma 1 will be contradicted either
by the parities of S(y, a+) and S(y, b−) or by N(y) > n.

To prove (4), choose first a point x0 where no quasi-derivative of y = y(x, s)
vanishes. If S(y, x0+) = q then obviously S(y, x0−) = n − q. On the subinterval
[a, x0] we have

n ≥ N(y) ≥ S(y, a+) + S(y, x0−) = k + (n − q)

and on [x0, s],

n ≥ N(y) ≥ S(y, x0+) + S(y, s−) = q + (n − k).

Hence q = k. If Lty(x, s) = 0 for a certain t, 0 ≤ t ≤ n − 1, choose values α, β
sufficiently close to x, α < x < β, where no quasi-derivative vanishes. If x ∈ (a, s],
then by definition,

S(y, x−) = S(y, α−) = n − k,

and if x ∈ [a, s),
S(y, x+) = S(y, β+) = k.

The function Lty(x, s), 0 ≤ t ≤ n−1, can have only simple zeros in (a, s). Indeed
if it has a multiple zero, then N(y) ≥ S(y, a+) + S(y, s−) + 2 > n, contradicting
(9). Lt+1y has exactly one simple zero in (a, s) between two consecutive zeros of
Lty by Lemma 1, since N(y(x, s)) = n.

To prove (6), let {u1, . . . , un} be an independent set of solutions of (1). We show
that

y(x, s) =

∣

∣

∣

∣

∣

∣

∣

Li1u1(a), . . . , Lik
u1(a), Lju1(s), . . . , Ljn−k−1

u1(s), u1(x)
...

...
...

...
Li1un(a), . . . , Lik

un(a), Ljun(s), . . . , Ljn−k−1
un(s), un(x)

∣

∣

∣

∣

∣

∣

∣

.

Obviously, the determinant is a solution of (1) which satisfies (13). We have only
to show that it is not the trivial solution. If it were identically zero, the minor
consisting of the first n − 1 columns would be of rank less than n − 1. This would
contradict the uniqueness (proved before) of the solution which satisfies (13). By the
above representation and by the implicit function theorem, it follows that Lty(x, s),
t = 0, . . . , n − 1, together with its simple zeros are differentiable functions of s.

Remark. Lemma 2 depends heavily on the fact that every solution of (13)
satisfies N(y) ≥ n − 1. Actually, properties (1)-(6) can be proved for solutions
satisfying any boundary condition for which N(y) ≥ n − 1. Since y(x, s) satisfies
n−1 of the boundary condition (2), s is an extremal point if and only if Ljn−k

y(x, s)
vanishes at x = s. If s is an extremal point, y(x, s) is the unique corresponding
extremal solution.

For an extremal solution y = y(x, θi) we have sgn[Lj+1y(θi − ε)] = −
sgn[Ljy(θi − ε)] if and only if j ∈ {j1, . . . , jn−k}, i.e. only when Ljy(θi) = 0.
Therefore by Lemma 1, Lt+1y changes sign before (after) the first (last) zero of
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Lty in (a, θi(a)) if and only if Lty(a) = 0 (Lty(θi) = 0). Since Lty(x, θi) may have
only simple zeros in (a, θi(a)), Lemma 1 implies the following

Corollary 1. Let y be the unique extremal solution which corresponds to θi(a).
Then Lt+1y has exactly one simple zero between two consecutive zeros of Lty in
[a, θi(a)], and these are its only zeros in (a, θi(a)).

There exists a nontrivial solution
∑n

i=1 ciui which satisfies (2) if and only if the
determinant

W (s) =

∣

∣

∣

∣

∣

∣

∣

Li1u1(a), . . . , Lik
u1(a), Lj1u1(s), . . . , Ljn−k

u1(s)
...

...
Li1un(a), . . . , Lik

un(a), Lj1un(s), . . . , Ljn−k
un(s)

∣

∣

∣

∣

∣

∣

∣

vanishes. Thus, the extremal point θi(a) is the i-th zero of W (s) in (a,∞). Note
that W (s) = Ljn−k

y(x, s)
∣

∣

x=s
.

Theorem 1. The extremal points of (2) are simple zeros of W (s).

Proof. To stress the dependence of W (s) on the indices {j1, . . . , jn−k}, we use the
notation W (s; j1, . . . , jn−k). Clearly

(14)

d

ds
W (s; j1, . . . , jn−k)

=
n−k
∑

t=1

W (s; j1, . . . , jt−1, jt + 1, jt+1, . . . , jn−k)/ρjt
(s).

Throughout the proof let s be an extremal point θi(a) of (2), thus

(15) W (s; j1, . . . , jn−k) = 0.

All the determinants in (14) for which jt + 1 6= jt+1 are non-zero. Indeed, suppose
that

(16) W (s; j1, . . . , jt + 1, . . . , jn−k) = 0.

By (15), there exists a solution y1, namely the corresponding extremal solution,
which satisfies (2). By (16), there exists a solution y2 which satisfies the conditions

(17)
Liy(a) = 0, i ∈ {i1, . . . , ik},

Ljy(s) = 0, j ∈ {j1, . . . , jt + 1, . . . , jn−k},

If y1, y2 are linearly dependent, they satisfy both (2) and (17). This implies N(y1) ≥
n + 1, an impossibility. On the other hand, if y1, y2 are independent, they are two
independent solutions obeying the n − 1 boundary conditions

Liy(a) = 0, i ∈ {i1, . . . , ik},

Ljy(s) = 0, j ∈ {j1, . . . , jn−k} \ {jt},

and this is impossible by Lemma 2.
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If the sum in (14) consists of a single non-zero term, as is the case for the
boundary conditions (4), the proof is complete. To prove that W ′(s) 6= 0 in the
general case, we show that every two non-zero terms of (14), for example, the q-th
term and the r-th term, have the same sign. Let jq < jr and let

y1(x, s) =

∣

∣

∣

∣

∣

∣

∣

Li1u1(a), . . . , Lj1u1(s), . . . . . . , Ljn−k
u1(s), u1(x)

...
jq

missing
Li1un(a), . . . , Lj1un(s), . . . . . . , Ljn−k

un(s), un(x)

∣

∣

∣

∣

∣

∣

∣

.

As in Lemma 2, y1(x, s) is the essentially unique solution of (1) which satisfies

(18)
Liy(a) = 0, i ∈ {i1, . . . , ik},

Ljy(s) = 0, j ∈ {j1, . . . , jn−k} \ {jq}.

Since the extremal solution corresponding to s = θi satisfies (18), it follows by
uniqueness that y1(x, s) is a constant multiple of the extremal solution and satisfies
(2). By differentiation we have

(19) (−1)n−k−q+1Ljq+1y1(x, s)
∣

∣

∣

x=s
= W (s; j1, . . . , jq + l, . . . , jn−k) ≡ Wq.

Similarly, if

y2(x, s) =

∣

∣

∣

∣

∣

∣

∣

Li1u1(a), . . . , Lj1u1(s), . . . . . . , Ljn−k
u1(s), u1(x)

...
jr

missing
Li1un(a), . . . , Lj1un(s), . . . . . . , Ljn−k

un(s), un(x)

∣

∣

∣

∣

∣

∣

∣

,

then

(20) (−1)n−k−r+1Ljr+1y2(x, s)
∣

∣

∣

x=s
= W (s; j1, . . . , jr + l, . . . , jn−k) ≡ Wr.

Using ( 19) and (20) we shall now show that WqWr > 0.

It was remarked above that y1(x, s) satisfies (2). Therefore

sgn [Lj+1y1(x, s)
∣

∣

∣

s−ε
] = −sgn [Ljy1(x, s)

∣

∣

∣

s−ε
]

if and only if j ∈ {j1, . . . , jq, . . . , jn−k}. In the sequence L0y1(x, s)
∣

∣

∣

s−ε
, . . . ,

Ljq+1

∣

∣

∣

s−ε
there are exactly q changes of sign. Thus

sgn [Wq] = (−1)n−k−q+1sgn [Ljq+1y1(x, s)
∣

∣

∣

s−ε
]

= (−1)n−k+1sgn [L1y1(x, s)
∣

∣

∣

s−ε
].

A similar relation holds between Wr and y2(x, s). Since y1(x, s), y2(x, s) are both
constant multiples of the extremal solution, we get

sgn [WqWr] = sgn [y1(x, s)
∣

∣

∣

s−ε
y2(x, s)

∣

∣

∣

s−ε
] = sgn [y1(x, s)y2(x, s)]

and it suffices to show that the constant ratio of y1(x, s) and y2(x, s) is positive.
Choose an index ik+1, different from i1, . . . , ik; say i1 < · · · < ik < ik+1 ≤ n − 1.
To prove the last assertion it is sufficient to show that

(21) sgn [Lik+1
y1(a, s)] = sgn [Lik+1

y2(a, s)].
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The choice of ik+1 ensures that the quasi-derivatives in (21) are non zero, else we
would have

N(y1(x, s)) ≥ S(y − 1, a+) + S(y, s−) ≥ (k + 1) + (n − k) > n.

We apply Lik+1
to the determinant y1(x, s) and substitute x = a. In this determi-

nant there exists a column which corresponds to jr but the column corresponding
to jq is missing. We bring the last column to the (k + 1)-th place and the column
which corresponds to jr , to the last place. Now

Lik+1
y1(a, s) = (−1)n−k−1(−1)n−k−r−1×

∣

∣

∣

∣

∣

∣

∣

Li1u1(a), . . . , Lik
u1(a), Lik+1

u1(a), Lj1u1(s), . . . . . . , Ljn−k
u1(s), Ljr

u1(s)
... jq ,jr

missing

Li1u1(a), . . . . . . , Ljr
un(s)

∣

∣

∣

∣

∣

∣

∣

(The indices jq, jr are missing among the columns which correspond to j1, . . . , jn−k.)
Similarly,

Lik+1
y2(a, s) = (−1)n−k−1(−1)n−k−q−2×

∣

∣

∣

∣

∣

∣

∣

Li1u1(a), . . . , Lik
u1(a), Lik+1

u1(a), Lj1u1(s), . . . . . . , Ljn−k
u1(s), Ljq

u1(s)
... jq,jr

missing

Li1u1(a), . . . . . . , Ljq
un(s)

∣

∣

∣

∣

∣

∣

∣

Observe that the cofactors in the last two relations differ by (−1). This is explained
as follows: In the determinant y2(x, s) the column corresponding to jr is missing.
Since jq < jr ≤ jn−k, one less exchange of columns is necessary to bring the column
which corresponds to jq to the last entry of Lik+1

y2(a, s) than for the corresponding
exchange in Lik+1

y1(a, s).

Now define a third function

y3(x, s) =

∣

∣

∣

∣

∣

∣

∣

Li1u1(a), . . . , Lik+1
u1(a), Lj1u1(s), . . . . . . , Ljn−k

u1(s), u1(x)
... jq,jr

missing

Li1un(a), . . . , Lik+1
u1(a), Lj1un(s), . . . . . . , Ljn−k

un(s), un(x)

∣

∣

∣

∣

∣

∣

∣

,

which is the unique solution satisfying the boundary conditions

(22)
Liy(a) = 0, i ∈ {i1, . . . , ik, ik+l},

Ljy(s) = 0, j ∈ {j1, . . . , jn−k} \ {jq, jr}.

Using y3(x, s), we have

(23)
Lik+1

y1(a, s) = (−1)rLjr
y3(x, s)

∣

∣

∣

x=s
,

Lik+1
y2(a, s) = (−1)q−1Ljr

y3(x, s)
∣

∣

∣

x=s
.

To prove (21), we now determine the signs of L0y3(x, s), . . . , Ln−1y3(x, s) on a
left neighborhood of s. By (22) we have S(y3, a+) ≥ k + 1, S(y3, s−) ≥ n − k − 2,
and N(y3) ≥ n − 1. But S(y3, a+) = k + 1, S(y3, s−) = n − k − 1 is impossible by
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Lemma 1 and assumption (3), and therefore the sign change

(24) sgn [Lj+1y3(x, s)
∣

∣

∣

s−ε
] = −sgn [Ljy3(x, s)

∣

∣

∣

s−ε
]

must hold precisely for the n − k − 2 indices {j1, . . . , jn−k} \ {jq, jr}. Among the
functions Ljq

y3, . . . , Ljr
y3, (24) holds exactly for the r−q−1 indices {jq+1, . . . , jr−1

and so

(25) sgn [Ljr
y3(x, s)

∣

∣

∣

s
] = (−1)r−q−1sgn [Ljq

y3(x, s)
∣

∣

∣

s
]

Relations (25) and (23) imply (21), which is equivalent to WqWr > 0. This
completes the proof of Theorem 1.

Theorem 2. θi is a differentiable strictly increasing function, whose domain is of
the form [0, b), 0 ≤ b ≤ ∞.

Proof. If θi(a) exists, it is a simple zero of W (a, s). By the implicit function
theorem, θi is differentiable in a neighborhood of a and

dθi

da
= −

∂W

∂a

/∂W

∂

∣

∣

∣

s=θi(a)
.

Moreover, θi may be continued as long as it is bounded. As in Theorem 1, one
shows that

∂W

∂a

∣

∣

∣

s=θi(a)
=

k
∑

t=1

W (a, θi(a); i1, . . . , it + 1, . . . , ik, j1, . . . , jn−k) 6= 0.

Thus θi(a) 6= 0 and θi is monotonic. Furthermore it is increasing, for otherwise it
could be continued until the inequality a < θi(a) fails.

If θi(a) exists, then θi is defined in some open interval A containing a. Let
a′ = inf A. For every b ∈ (a′, a], θi(b) exists, that is W (b, θi(b)) = 0. Therefore by
continuity, θi(a

′) also exists. If a′ > 0 (((1) is defined on [0,∞)), then θi is defined
on a neighbourhood of a′, contradicting the definition of a′. Thus, a′ = 0. This
completes the proof of the theorem.

The next result describes the zeros of y(x, s) as functions of s.

Theorem 3. The number of simple zeros of Lry(x, s), 0 ≤ r ≤ n − 1, in (a, s)
can vary, as s increases, only when a simple zero enters (a, s) through the variable
endpoint s.

Proof. By Lemma 2, two simple zeros of Lry(x, s) from (a, s) cannot meet in [a, s],
nor can a simple zero meet the endpoint a, as s varies. Since the simple zeros are
continuous functions of s, their number in (a, s) can vary only when one simple zero
enters (a, s) or leaves it through the endpoint s. We shall prove that as s increases,
simple zeros of Lry(x, s) can only enter (a, s).

It is sufficient to prove the theorem only for quasi-derivatives on which no bound-
ary condition at s is imposed by (13). Indeed, suppose that the boundary conditions

(26) Ljy(s) = 0, j = r, r + 1, . . . , r + q − 1
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are included in (13) for a certain q, q ≥ 1, but r + q 6∈ {j1, . . . , jn−k−1}. If Lry(x, s)
has a zero in a given left neighbourhood of s, then by (26) the function Lr+qy(x, s)
also has a zero in the same neighbourhood. Conversely, assume that, for certain
values of s, Lry(x, s) has no zero in an appropriate left neighbourhood of s. Then

sgn[Lry(x, s)
∣

∣

∣

s−ε
], is fixed for 0 < ε < ε0, ε0 independent of s. By (26),

sgn [Lr+qy(x, s)
∣

∣

∣

s−ε
] = (−1)qsgn [Lry(x, s)

∣

∣

∣

s−ε
].

Therefore sgn[Lr+qy(x, s)
∣

∣

s−ε
] also remains fixed for the same values of s, and

Lr+qy(x, s) has no zero in the appropriate left neighbourhoods of s. Hence without
loss of generality we may assume that r 6∈ {j1, . . . , jn−k−1}.

First we prove the theorem under the additional restriction r + 1 6∈ {j1, . . . ,
jn−k−1}. In this case, if Lry(x, s0) vanishes at x = s0 then Lr+1y(x, s0)

∣

∣

s0
6= 0 and

s0 is a simple zero of Lry(x, s0). By the implicit function theorem, there exists a
simple zero x(s) of Lry(x, s) such that x(s0) = s0 and

x′(s0) = −
∂

∂s
Lry(x, s)

/ ∂

∂x
Lry(x, s)

∣

∣

∣

s=s0,x=x(s0)=s0

Differentiating the determinant Lry(x, s) with respect to x and s and substituting
s = s0, x = x(s0) = s0, we obtain

(27)
∂

∂x
Lry(x, s)

∣

∣

∣

(s0,s0)
= ρ−1

r+1(s0)W (s0; j1, . . . , jn−k−1, r + 1)

(28)
∂

∂s
Lry(x, s)

∣

∣

∣

(s0,s0)
=

n−k−1
∑

t=1

ρ−1
jt+1(s0)W (s0; j1, . . . , jt + 1, . . . jn−k−1, r)

But s0 is an extremal point corresponding to the boundary conditions

(29)
Liy(a) = 0, i ∈ {i1, . . . , ik},

Ljy(s) = 0, j ∈ {j1, . . . , jn−k−1, r}

and it satisfies W (s0; j1, . . . , jn−k−1, r) = 0. Therefore by the proof of Theorem 1
all the determinants in (27)-(28) have the same sign; hence x′(s0) ≤ 0. The distance
between the simple zero x(s) and the variable endpoint s, d(s) = x(s)− s, satisfies
d(s0) = 0, d′(s0) ≤ −1. Therefore as s increases and passes through s0, x(s) enters
the interval (a, s).

On the other hand, if r +1 ∈ {j1, . . . , jn−k−1}, the zero of Lry(x, s0) at s0 is not
simple and the previous argument fails. In this case let s1 be the extremal point of
(29) which follows s0. (Regarding the existence of s1, see the remark at the end of
the proof.) To prove that a simple zero is added to (a, s) as s passes through s0, it
is sufficient to show that Lry(x, s1) has more zeros in (a, s1) than Lry(x, s0) has in
(a, s0).

In the set {j1, . . . , jn−k−1, r} there exists an index, say jq, such that jq+1 does
not belong to the set. Let y1(x, s) be the unique solution satisfying the conditions

(30)
Liy(a) = 0, i ∈ {i1, . . . , ik, },

Ljy(s) = 0, j ∈ {j1, . . . , jn−k−1, r} \ {jq}.
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For the extremal point s0 of (29), the extremal solution y(x, s0) satisfies (30), and by
uniqueness we may assume that y1(x, s0) ≡ y(x, s0). Similarly y1(x, s1) ≡ y(x, s1).
By the choice of jq, we may apply the first part of the proof to y1(x, s) and deduce
that Ljq

y1(x, s1) ≡ Ljq
y(x, s1) has one more zero in (a, s1) than Ljq

y1(x, s0) ≡
Ljq

y(x, s0) has in (a, s0). By Corollary 1, Lt+1y(x, s0) has exactly one simple zero
between two consecutive simple zeros of Lty(x, s0) in [a, s0], and those are its only
zeros in (a, s0). The same property holds for Lt+1y(x, s1) in (a, s1). In view of
this relation among the zeros of consecutive quasi-derivatives of extremal solutions
and the above description of the zeros of Ljq

y(x, s0) and Ljq
y(x, s1), it follows that

for every t, 0 ≤ t ≤ n − 1 , Lty(x, s1) has exactly one more simple zero in (a, s1)
than Lty(x, s0) has in (a, s0). In particular this holds for Lry(x, s1) and Lry(x, s0),
completing the proof of the theorem.

Note that in the last case the zero which is added to (a, s) does not necessarily
cross the endpoint s from its right side to the left side. It may appear equally well,
for example, when a multiple zero at s splits into simple zeros.

Remark. We may assume without loss of generality that the extremal point s1,
s1 > s0, exists. Choose c , c > s0, and on [c,∞) define p(x) ≡ p(c), ρi(x) ≡ ρi(c).
This definition does not alter y(x, s) for s ∈ [a, c], but on [c,∞), on the other hand,
(1) becomes an equation with constant coefficients. For this equation θi(c) exists
for every i. Indeed, θi(c) is an extremal point for y(n)n + Ay = 0 and (29) if and
only if λ = [θi(c) − c]n is an eigenvalue of y(n) + λAy = 0 with the corresponding
boundary conditions at a = 0, s = 1. Now there exists an infinite sequence of such
eigenvalues [3], so θi(c) exists for every i. Since a < c, we have thus shown that
θi(c) exists for every i by Theorem 2.

In the course of the last proof we have seen that, for two consecutive extremal
points s0 < s1, Lty(x, s1), has one zero more in (a, s1) than Lty(x, s0) has in (a, s0).
This yields

Corollary 2. The quasi-derivative Lty(x, θi(a) of the extremal solution
y(x, θi(a)) has i + ℓt simple zeros in (a, θi(a)), i = 1, 2, . . .. For the boundary
conditions (4), y(x, θi(a)) has exactly i − 1 simple zeros in (a, θi(a)).

Since Lty(x, θi(a)) is a continuous function of a, and the number of its simple
zeros in (a, θi(a)) cannot vary with a, the constants ℓ0, . . . , ℓn−1 depend only on the
indices i1, . . . , jn−k. By Corollary 1, any one of the constants ℓt determines all the
others; they can be found easily by considering y(x, s) for s sufficiently close to a.
For the boundary conditions (4), for example, it follows that ℓ0 = −1 by the known
fact that y(x, θ1(a)) 6= 0 on (a, θ1(a)).

Corollary 3. Let yj(x) satisfy (13) at the points aj , sj, j = 1, 2. If (a2, s2) ⊃
(a1, s1) then Lry2 has at least as many zeros in (a2, s2) as Lry1 has in (a1, s1).

Indeed, the number of zeros of Lry(x, s) in (a, s) varies only when s passes
through an extremal point θi of (29). Let θi−1(a1) < s1 ≤ θi(a1). By Corollary 2
and Theorem 3, Lry1 has exactly i + ℓr zeros in (a1, s1). Since a2 ≤ a1, we have

s2 ≥ s1 > θi−1(a1) ≥ θi−1(a2).
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Hence Lry2 has at least i + ℓr zeros in (a2, s2) and the corollary follows imme-
diately.

Corollary 4. Let λi(a, s) 6= 0 be the i-th eigenvalue of the equation Ly+λp(x)y = 0
with boundary conditions (2). Then |λi(a, s)| is a decreasing function of the interval
(a, s) (with respect to inclusion).

Let y(x, s, λ) be the solution of Ly + λp(x)y = 0 which satisfies (13). The
result follows by observing from Corollary 3 and [3] that the number of zeros of
Ljn−k

y(x, s, λ) in (a, s) increases as (a, s) and |λ| increase. The differentiability of
λi(a, s) with respect to s was proved in [3].

The boundary conditions (6) play an important role in [9], since the Green’s
function which corresponds to the operator Ln and (6) can be calculated explicitly
and is independent of s. The focal point ζk,n−k(a) appears quite naturally in the
forthcoming proofs, due to the following characterization.

Lemma 3. Equation (1) is (k, n− k)-disfocal in (a, b) if and only if there exists a
solution y which satisfies

(31)
Liy > 0, i = 0, . . . , k,

(−1)j−kLjy > 0, j = k, . . . , n,

on (a, b).

Proof. Sufficiency. Let y satisfy (31) and assume for contradiction that (1) is not
disfocal in (a, b). That is, assume there exists a solution u which satisfies (6) at the
points a′, b′ = ζk,n−k(a′), a < a′ < b′ < b. We consider the solution wλ = y− λu on
[a′, b′]. For λ = 0 we have Ltw0 = Lty 6= 0 on [a′, b′] by (31). Let λ0 be the smallest
positive value of λ such that Ltwλ vanishes in [a′, b′] for some t, 0 ≤ t ≤ n − 1. No
quasi-derivative of Ltwλ0

changes sign in (a′, b′). Otherwise, by continuity, Ltwλ

would change sign for λ sufficiently close to λ0, contradicting the definition of λ0.
Therefore

(32)
Liwλ0

≥ 0, i = 0, . . . , k,

(−1)j−kLjwλ0
≥ 0, j = k, . . . , n, a′ ≤ x ≤ b′.

At the endpoints we have by (6) and (31),

(33)
Liwλ0

(a′) = Liy(a′) > 0, i = 0, . . . , k − 1,

(−1)j−kLjwλ0
(b′) = (−1)j−kLjy(b′) > 0, j = k, . . . , n − 1.

Relations (32)-(33) imply that Ltwλ0
6= 0 on [a′, b′], contradicting the definition

of λ0. Indeed, for 0 ≤ t ≤ k − 1, we have Ltwλ0
(a′) > 0 and Lt+1wλ0

≥ 0 on
[a′, b′]. Hence Ltwλ0

increases and does not vanish in [a′, b′]. For k ≤ t ≤ n − 1
we have also (−1)t−kLtwλ0

(b′) > 0 and (−1)t−k+1Lt+1wλ0
≥ 0 on [a′b′]. Thus

(−1)t−kLtwλ0
decreases and does not vanish in [a′b′]. This contradiction proves

that (1) is (k, n − k)-disfocal on (a, b).

Necessity. Let a < s < b, and let y(x, s) be the solution which satisfies

(34)
Liy(a) > 0, i = 0, . . . , k − 1,

Ljy(s) > 0, j = k, . . . , n − 2,
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If s is sufficiently close to a, then Ln−1y(x, s) 6= 0 on [a, s], since it is impossible
that every quasi-derivative of a nontrivial solution will have a zero in an arbitrary
small interval. A zero of Ln−1y(x, s) appears in (a, s) only when s passes through
ζk,n−k(a). If (1) is (k, n− k)-disfocal on (a, b), by the continuity of ζk,n−k it is also
(k, n−k)-disfocal on [a, b) and Ln−1y(x, b) 6= 0 on [a, b). If Lty(x, b), 0 ≤ t ≤ n−2,
has a zero in (a, b), we find by (34) and Rolle’s theorem that Ln−1y(x, b) vanishes
in (a, b), which is impossible. Therefore Lty(x, b) 6= 0 on (a, b). By (34) and (3) it
is easily seen that the sign of Lty(x, b) in (a, b) is given by (31).

Lemma 4. If ηk,n−k(a) exists, then ζk,n−k(a) < ηk,n−k(a).

Proof. Let θi(a) be the first extremal point for the conditions

(35)
Liy(a) = 0, i = 0, . . . , k − 1,

Ljy(s) = 0, j ∈ {j1, . . . , jq, . . . , jn−k}.

To prove the lemma, it suffices to show that for the conditions

(36)
Liy(a) = 0, i = 0, . . . , k − 1,

Ljy(s) = 0, j ∈ {j1, . . . , jq + 1, . . . , jn−k},

where jq + 1 < jq+1, there is an extremal point in (a, θ1(a)).

Let y(x, s) be the solution satisfying

(37)
Liy(a) = 0, i = 0, . . . , k − 1,

Ljy(s) = 0, j ∈ {j1, . . . , jn−k} \ {jq}.

It will be shown below that as s increases from a to θ1(a), a zero is added to
Ljq+1y(x, s) in (a, s). This zero must enter (a, s) from the right endpoint for a
certain value of s, and thus (36) has an extremal point in (a, θ1(a)).

First we show that each Lty(x, s), 0 ≤ t ≤ jq, has a zero in [a, s) for every s. If
0 ≤ t ≤ k−1, then Lty(a, s) = 0 by (37). Assume that k ≤ jq ≤ n−1 and let k ≤ t ≤
jq. Since (37) imposes no boundary condition at s on either Ljq

y or Ljq+1y, at most
n− t− 2 conditions are placed on the n− t quasi-derivatives Lty, . . . , Ln−1y. Thus
at least (n−k−1)−(n−t−2) = t−k+1 of the functions L0y(x, s), . . . , Lt−1y(x, s)
vanish at s. Counting the zeros of L0y(x, s), . . . , Ln−1y(x, s) at a and s, we find by
applying Rolle’s theorem t times that Lty(x, s) has at least k + (t − k + 1) − t = 1
zeros in (a, s). In particular, Ljq

y(x, s) has a zero in [a, s). Let us denote the last
zero of Ljq

y(x, s) in [a, s) by x(s). For a < s < θ1(a), x(s) is a continuous function
of s, because the number of zeros of Ljq

y(x, s) in (a, s) increases only when s passes
through the extremal point θ1(a) of (35).

We claim that, when s is sufficiently close to a, the function Ljq+1y(x, s) has
no zero in (x(s); s]. Suppose the contrary. Then, due to the additional zero of
Ljq+1y(x, s) in (x(s); s], we find by applying the preceding argument that each of
the following quasi-derivatives also has a zero in [a, s]. But it is impossible that
each quasi-derivative of a nontrivial solution will have a zero in an arbitrary small
interval.

On the other hand, for s = θ1(a), Ljq
y(x, θ1(a)) vanishes at θ1(a) as well as at

x(θ1(a)). Therefore Ljq+1y(x, θ1(a)) has a zero in
(

x(θ1(a)), θ1(a)
)

. This zero of
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Ljq+1y(x, s) is added to (a, s) for some s, a < s < θ1(a), and so (36) has an extremal
point in (a, θ1(a)).

An alternative proof appears in [4], though ζk,n−k is not mentioned explicitly.

3. Extremal points and oscillatory solutions

The following sequence of theorems will prove Theorem I.

Theorem 4. If all the extremal points θi(a), i = 1, 2, . . ., exist for one system of
boundary conditions of type (2), all the extremal points exist for every system of
boundary conditions of type (2).

Proof. It is sufficient to prove that all the extremal points θi(a), i = 1, 2, . . ., of
(2) exist if and only if all the extremal points θ̃i(a), i = 1, 2, . . ., corresponding to
the conditions

(38)
Liy(a) = 0, i ∈ {i1, . . . , in−k}

Ljy(s) = 0, j ∈ {j1, . . . , jq + 1, . . . , jn−k},

where jq + 1 6∈ {j1, . . . , jq, . . . , jn−k}, exist. We shall prove that the series of points

{θi(a)} and {θ̃i(a)} separate each other.

Let y(x, s) be the solution satisfying

(38)
Liy(a) = 0, i ∈ {i1, . . . , in−k}

Ljy(s) = 0, j ∈ {j1, . . . , jn−k} \ {jq}.

The extremal solutions of (2) and (38) which correspond to θi(a) and θ̃i(a) are
y(x, θi(a)) and y(x, θ̃i(a)) respectively.

By Corollary 2, Lty(x, θi+1(a)) has one more simple zero in (a, θi+1(a)) than
Lty(x, θi(a)) has in (a, θi(a)). In particular this holds for t = jq + 1. By Theorem
3, the additional zero of Ljq+1y(x, s) enters (a, s) through the right endpoint for a
certain s̃, θi(a) < s̃ < θi+1(a). Thus (38) has an extremal point in (θi(a), θi+1(a)).
By the same argument, a simple zero is added to Ljq

y(x, s) in (a, s) as s increases

from θ̃i(a) to θ̃i+1(a), and (2) has an extremal point in (θ̃i(a), θ̃i+1(a)).

When a system of boundary conditions differs from (2) by one boundary condition
at the endpoint a, we define y(x, s) by deleting a boundary condition at a instead
of s.

Theorem 5. If the conjugate point ηk,n−k(a) exists for every a ≥ 0 then
(1) Equation (1) has an oscillatory solution y on [0,∞) which satisfies S(y, x+) ≡ k
for sufficiently large values of x.
(2) For every system of type (2) and for every a ≥ 0, all the extremal points θi(a),
i = 1, 2, . . . , exist.

Proof (cf. [4]). Let an arbitrary value a be given. We obtain a solution with
infinitely many zeros in [a,∞) and prove that all the extremal points corresponding
to (4) exist. By Theorem 4, it follows that the extremal points of every system of
type (2) exist.

The definition of the quasi-derivatives L0y, . . . , Ln−1y, and in general, the
extremal points of (2), also depend on the factorization of the disconjugate
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operator Ln into the form

Lny = ρn(ρn−1 . . . (ρ1(ρ0y)′)′ . . .)′.

It is well known that such a factorization of Ln is not unique. However, the extremal
points of (4) themselves are independent of the factorization because

L0y(c) = · · · = Li−1y(c) = 0, Liy(c) 6= 0

if and only if
y(c) = · · · = y(i−1)(c) = 0, y(i)(c) 6= 0,

for any choice of ρ0, . . . , ρn. Therefore in studying the extremal points of (4) we
may choose any convenient factorization of Ln. It is known [10] that ρ1, . . . , ρn−1

can be chosen so that

(40)

∫ ∞

ρ−1
i (x) dx = ∞, i = 1, . . . , n − 1.

In the following part of the proof, we assume that Ln has a representation (39),
(40).

Let y(x, s) be the solution which satisfies

(41)
y(i)(a) = 0, i = 0, . . . , k − 1,

y(j)(s) = 0, j = 0, . . . , n − k − 2.

For any factorization ρn(ρn−1 . . . (ρ1(ρ0y)′)′ . . .)′ of Lny, and for the corresponding

quasi-derivatives L0y = ρ0y, . . . , Ln−1y, Lny = Lny, the solution y(x, s) satisfies

Liy(a) = 0, i = 0, . . . , k − 1,

Ljy(s) = 0, j = 0, . . . , n − k − 2.

Hence by Lemma 2,

S
(

L0y(x + ε, s), . . . , (−1)nLny(x + ε, s)
)

≡ k for x ∈ [a, s).

As in [4], we shall prove that the number of zeros of y(x, s) in (a, s) tends to infinity
as s → ∞, and each of those zeros is a bounded continuous function of s. Since the
zeros enter (a, s) through the endpoint s, we obtain an infinite sequence of extremal
points. Since each zero is bounded, it follows that lim y(x, s) has in infinitely many
zeros in [a,∞).

Assume on the contrary that as s → ∞ the functions L0y(x, s), . . . , Ln−1y(x, s)
have at most a bounded number of zeros in (a, s) which are bounded from above as
functions of s. By Lemma 2, the zeros are continuous functions of s. Let M − 1 be
their commun upper bound. The other zeros (if any) are unbounded. We choose
a sequence {si} so that the unbounded zeros of L0y(x, si), . . . , Ln−1y(x, si) tend to
infinity as si → ∞. We normalize the solutions y(x, si) by

n−1
∑

t=0

[Lty(M, si)]
2 = 1.
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The normalized family {y(x, si)} is a compact set of solutions, and therefore it is
possible to choose a subsequence {sij

}, sij
→ ∞, and a nontrivial solution y so that

Lty(x, sij
) → Lty, t = 0, . . . , n, uniformly on compact intervals.

The zeros of L0y(x, sij
), . . . , Ln−1y(x, sij

) in [M, sij
), if any, tend to infinity as

sij
→ ∞ and their other zeros are in (a, M−1]. Hence L0y(x, sij

), . . . , Ln−1y(x, sij
)

do not vanish on an arbitrarily large right neighborhood of the point x = M − 1/2,
provided sij

is sufficiently large. Therefore the quasi-derivatives of y = lims→∞ y(x, s)
do not change their signs on (M−1/2,∞) and in fact, they do not vanish on [M,∞).

Let q, i ≤ q ≤ n, be the greatest index such that the two consecutive quasi-
derivatives Lq−1y, Lqy are of the same sign, say positive, on [M,∞), if such an
index exists. Since Lqy > 0, it is clear that Lq−1y increases, and by (40)

Lq−2y(x) = Lq−2(M) +

∫ x

M

Lq−1y/ρq−l dx

≥ Lq−2(M) + Lq−1y(M)

∫ x

M

ρ−1
q−l dx → ∞

as x → ∞. Since Lq−2 6= 0 on [M,∞), it is necessarily positive there. Similarly we
have

(42) Lty > 0, t = 0, . . . , q, x ∈ [M,∞).

Since q is the greatest index with the above property, it follows that

(43) (−1)t−qLty > 0, t = q, . . . , n, x ∈ [M,∞).

Therefore, for sufficiently large sij
,

Lty(M, sij
) > 0, t = 0, . . . , q,

(−1)t−qLty(M, sij
) > 0, t = q, . . . , n.

Hence S(y(x, sij
), M+) = q and by Lemma 2 also q = k. Substituting q = k into

(42), (43), we conclude by Lemma 3 that (1) is (k, n − k)-disfocal in (M,∞). By
Lemma 4, ηk,n−k does not exist on (M,∞), in contradiction to the hypothesis of
the theorem.

The last contradiction shows that, contrary to our assumption, the number of
zeros of y(x, s) in (a, s) which are bounded functions of s cannot remain bounded as
s → ∞. In other words, as s → ∞, the number of zeros of y(x, s) in (a, s) increases
indefinitely and all of them are bounded from above. Since all these zeros are also
bounded from below by a, the solution y = lims→∞ y(x, s) has infinitely many zeros
in [a,∞). Since S(y(x, s), x+) ≡ k in [a, s), and since by (9) only a finite number
of zeros of y(x, s) may coincide and form multiple zeros of y, we have S(y, x+) ≡ k
for sufficiently large values of x.

Also, the number of zeros of Ln−k−1y(x, s) in (a, s) increases indefinitely as
s → ∞. By Theorem 3, such a zero can be added to (a, s) only when s passes
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through an extremal point of (4). Therefore all the extremal points θi(a), i =
1, 2, . . . , of (4) exist. Theorem 5 is proved.

Observe that in fact we have proved that when (40) holds the existence of
ζk,n−k(a) for every a implies properties (1) and (2) of Theorem 5.

Theorem 5 verifies the implication (1) → (3) in Theorem I. Since (3) → (1) is
trivial, we have established the equivalence (1) ↔ (3). We may also deduce from
Theorem 5 that non-oscillation of (1) implies its eventual disconjugacy (see [4]).

Lemma 5. For every solution y of (1), there exists a half infinite interval (c,∞)
on which the functions Lty, t = 0, . . . , n − 1, may have only simple zeros, on
which Lt+1y has exactly one simple zero between two consecutive zeros of Lty,
and on which S(y, x+) is constant. If S(y, x+) ≡ q, then S(y, x−) ≡ n − q and
(−1)n−qp(x) < 0.

Proof. For a non-oscillatory solution the assertion is trivial, because none of its
quasi-derivatives vanish on [c,∞) if c > 0 is appropriately chosen.

Let y be an oscillatory solution. Then L0y, . . . , Ln−1y cannot have more than
[n/2] multiple zeros, since otherwise we would have N(y) ≥ 2([n/2] + 1) > n.

Let α, β be two consecutive zeros of Lty. Since

sgn[Lt+1y(α + ε)] = − sgn[Lt+1y(β − ε)],

it follows that Lt+1y has an odd number of zeros (counting multiplicities) in (α, β).
Consequently if Lt+1y has more than one zero in (α, β), it has at least three zeros,
i.e., two more than the minimum that can be deduced by Rolle’s theorem. Moreover
there can be at most [n/2] pairs of consecutive zeros of L0y, . . . , Ln−1y such that
between a pair of zeros of Lty there is more than one zero of Lt+1y. For assume
that in [a, b] there are more than [n/2] such pairs and denote by ℓ the number of
zeros of y in [a, b]. By applying Rolle’s theorem n times it follows that Lny has at
least ℓ + 2([n/2] + 1) − n > ℓ zeros, contradicting Lny = −py.

Since the above cases may occur only a finite number of times, there exists a
value c such that Lty, t = 0, . . . , n − 1, has only simple zeros on (c,∞), and Lt+1y
has exactly one simple zero between two zeros of Lty.

To prove that S(y, x+) is constant on (c,∞), it is sufficient to show that S(y, x+)
does not vary as x passes through the simple zeros of the quasi-derivatives. Let
a > c be a simple zero of Lty for which Lt+1y(a) > 0. We claim that Lt−1y(a) < 0.
Suppose to the contrary that Lt−1y(a) > 0 and denote by α and β the nearest zeros
of Lt−1y on the left and right of the point a. Then Lt−1y > 0 in (α, β) and so

Lty(α + ε) > 0, Lty(β − ε) < 0, ε > 0.

On the other hand, in view of Lty(a) = 0 and Lt+1y(a) > 0, we have L y(a−ε) < 0
and Lty(a + ε) > 0. Consequently Lty changes its sign at least three times in
(α, β): in (α, a), (a, β) and, of course, at a. This is impossible in (c,∞), whence
Lt−1y(a) < 0.

Since Lt−1y(a) < 0, Lty(a) = 0, and Lt+1y(a) > 0, it follows that

Lt−1y(a − ε) < 0, Lt−εy(a) < 0, Lt+1y(a − ε) > 0,
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and that
Lt−1y(a + ε) < 0, Lt+εy(a) > 0, Lt+1y(a + ε) > O,

Hence the functions S(y, x+) and S(y, x−) do not vary as x passes through a;
consequently they are constants on (c,∞).

At a point x0 > c where no quasi-derivative of y vanishes, we have obviously
S(y, x0+)+S(y, x0−) = n. Hence if S(y, x+) ≡ q on (c,∞), then S(y, x−) ≡ n− q.
If c < x1 < x2, we have

S(y, x1+) = q, S(y, x2−) = n − q

and so (−1)n−qp(x) < 0 according to Lemma 1.

Theorem 6. Let y(x) be an oscillatory solution of (1) which satisfies S(y, x+) ≡ k
for sufficient large values of x. Then for every system of type (2) and for every
a ≥ 0, all the extremal points θi(a), i = 1, 2, . . . , exist.

Proof. By Lemma 5, S(y, x+) is constant on some half line (c,∞), say S(y, x+) ≡
k . Let a > c be arbitrary. For an arbitrarily given integer m, we choose two points
t1 and s1 in (a,∞) such that each quasi-derivative of y has at least m simple zeros
in (t1, s1) and no quasi-derivative vanishes at either t1 or s1. Since S(y, t1+) = k,
we have S(y, s1−) = n − k. The inequality

Li+1y(t1)/Liy(t1) = ci > 0

holds for exactly k values of i , say {i1, . . . , ik}. Let

Lj+1y(s1)/Ljy(s1) = −dj < 0

holds for j ∈ {j1, . . . , jn−k}. For c < t < s, let u(x, t, s) be the solution which
satisfies the boundary conditions

(44)
Li+1u(t) − ciLiu(t) = 0, i ∈ {i1, . . . , ik},

Lj+1u(s) + djLju(s) = 0, j ∈ {j1, . . . , jn−k−1}.

Since every solution u of (44) satisfies

N(u) ≥ S(u, t+) + S(u, s−) ≥ k + (n − k − 1) = n − 1,

it follows that u(x, t, s) is unique and has the properties specified in Lemma 2 (see
the remark after Lemma 2). The oscillatory solution y satisfies (44) for t = t1, s =
s1; hence by the uniqueness u(x, t1, s1) ≡ y(x). Thus Lru(x, t1, s1), 0 ≤ r ≤ n − 1,
has at least m simple zeros in (t1, s1).

By Lemma 2 simple zeros of Lru(x, t1, s) in (t1, s) cannot coincide, and moreover
cannot meet t1 as s varies. Furthermore, when s is sufficiently close to t1, it is
impossible for every quasi-derivative of u(x, t1, s) to have zeros in (t1, s). Therefore,
as s decreases from s1 towards t1, zeros of the quasi-derivatives must leave (t1, s)
through the endpoint s. Suppose that the first zero of Ljn−k

u(x, t1, s) leaves (t1, s)
for s = s2, t1 < s2 < s1, that is

Ljn−k
u(x, t1, s2)

∣

∣

∣

x=s2

= 0.
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While the number of zeros of Ljn−k
u(x, t1, s) in (t1, s) decreases by one, the number

of zeros of u(x, t1, s) may decrease at most by jn−k < n. Hence u(x, t1, s2) has at
least m − n simple zeros in (t1, s2).

Let v(x, t, s) be the solution which satisfies

Li+1v(t) − ciLiv(t) = 0, i ∈ {i1, . . . , ik},

Lj+1v(s) + djLjv(s) = 0, j ∈ {j1, . . . , in−k−2, },

Ljn−k
v(s) = 0.

Since v(x, t, s) is unique it enjoys the properties (1)-(6) of Lemma 2, and v(x, t1, s2)
≡ u(x, t1, s2). Now we let s decrease until a zero of Ljn−k−1

v(x, t1, s) leaves (t1, s)
through the endpoint s, for s = s3, t1 < s3 < s2 < s1. Repeating the process of
decreasing s and increasing t, we finally obtain an interval [t, s] ⊂ (t1, s1) and a
solution w which satisfies

(45)
Liw(t) = 0, i ∈ {i1, . . . , ik},

Ljw(s) = 0, j ∈ {j1, . . . , jn−k}.

Moreover, w has at least m − n2 simple zeros in (t, s).

Now s is an extremal point, say θi(t), of (45). By Corollary 2 we have i + ℓ0 ≥
m − n2. But m was chosen arbitrarily, so that θi(t) exists for every i. Since
a < t1 < t, it follows from Theorem 2 that θi(a) also exists for every i. Thus by
Theorem 4 all the extremal points of every system of type (2) exist.

The next theorem is the converse of Theorem 6.

Theorem 7. If for one system of boundary conditions of type (2) and for one value
of a, all the extremal points θi(a), i = 1, 2, . . ., exist, then (1) has an oscillatory
solution y which satisfies S(y, x+) ≡ k for sufficiently large values of x.

Proof. By Theorem 4 we may assume without loss of generality that {θi(a)} are
the extremal points of (4). Let y(x, s) be the solution satisfying (41). Suppose for
contradiction that as s → ∞ there are only a finite number of zeros (in (a, s)) of
y(x, s) and its quasi-derivatives which are bounded functions of s. Then as shown
in the proof of Theorem 5, (1) is (k, n − k)-disfocal on (M,∞). We now use the
existence of θi(a), i = 1, 2, . . ., to get a contradiction.

Since θi(a), exists for every i, the number of zeros of the extremal solutions
y(x, θi(a)), in (a, θi(a)) increases indefinitely as i → ∞. Only a bounded number of
them are in (a, M). Therefore y(x, s0) has an arbitrarily given number of zeros in
(M, s0) for sufficiently large s0. Moreover S(y(x, s)), x+) ≡ k in [a, s0). As in the
proof of Theorem 6, by contracting the interval (M, s0) we see that the focal point
ζk,n−k(c), as well as other extremal points, exists for some c, M < c < s0. This
contradicts the previous conclusion that (1) is (k, n − k)-disfocal in (M,∞). This
proves that as s → ∞ the number of zeros of y(x, s) in (a, s) increases indefinitely,
and all of them are bounded functions of s. Therefore lims→∞ y(x, s) is the required
oscillatory solution.

Theorems 6 and 7 prove the implications (2) → (4), (4) → (3) of Theorem I.
Since (3) → (2) is trivial, we have established the equivalence (2) ↔ (3) ↔ (4).
To complete the proof of Theorem I, we have only to verify (4) → (5), because
(5) → (4) also is trivial.
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Theorem 8. The solutions of (1) which have the same final constant value of
S(y, x+) are either all oscillatory or all non-oscillatory.

Proof. Let y1 be a non-oscillatory solution of (1), and let S(y1, x+) ≡ k for
sufficiently large values of x. The quasi-derivatives of y1 do not vanish on [M,∞)
for an appropriately chosen M ; hence there are k indices i1, . . . , ik such that

(46)
sgn [Li+1y] = sgn Liy], i ∈ {i1, . . . , ik},

sgn [Lj+1y] = sgn Ljy], j ∈ {0, . . . , n − 1} \ {i1, . . . , ik},

on [M,∞). (If (40) holds, then {i1, . . . , ik} = {0, . . . , k − 1} as in (42), (43)).

If, on the other hand, there exists an oscillatory solution y2 such that S(y2, x+) ≡
k, then by Theorem 6, θi(a) exists for every a, every i, and every system of boundary
conditions of type (2). In particular, θ1(M) exists for the conditions

(47)
Liy(M) = 0, i ∈ {i1, . . . , ik},

Ljy(s) = 0, j ∈ {0, . . . , n − 1} \ {i1, . . . , ik},

But, exactly as in the proof of sufficiency in Lemma 3, the conditions (46) and the
existence of θ1(M) for (47) are incompatible. This completes the proof of Theorem
I.

For the sake of completeness, we conclude by proving the following analogue of
Theorem 4.3 of [9].

Lemma 6. Let a be a fixed point and assume that

(40)

∫ ∞

ρ−1
i (x) dx = ∞, i = 1, . . . , n − 1.

Then ηk,n−k(a) exists in (a,∞) if and only if ζk,n−k(a) exists in (a,∞).

Proof. In Lemma 4 we have shown, without any assumption about (1), that
if ηk,n−k(a) exists then also ζk,n−k(a) exists. It remains to prove the converse
implication.

Let y(x, s) be the solution of (41). If ηk,n−k(a) does not exist, then

Lny(x, s) = −p(x)y(x, s) 6= 0 on (a, s).

Let xt(s) be the first zero of Lty(x, s), 1 ≤ t ≤ n−2, in (a, s). This exists in view of
the fact that y(x, s) has k +(n−k−1) = n−1 zeros at a and s. If also Ln−1y(x, s)
has a zero in (a, s), it is unique (since Lny(x, s) 6= 0); we denote it by xn−1(s). It
is easily verified that

a < xk(s) < xk−1(s) < . . . < x1(s) < s,

a < xk(s) < xk+1(s) < . . . < xn−2(s) < xn−1(s).

By Lemma 2, y(x, s) satisfies (31) on (a, xk(s)); hence (1) is (k, n − k)-disfocal on
that interval and, by Theorem 2, also on [a, xk(s)). To complete the proof it suffices
to show that xk(s) → ∞ as s → ∞.

Assume to the contrary that xk(s) is bounded as s→∞. Let q, k+1 ≤ q ≤ n, be
the first index such that xq(s) is unbounded or Lqy(x, s) has no zero in (a, s). By
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Lemma 2,
sgn [Lqy(a, s)] = sgn Lq−1y(a, s)]

and also Lq−1y(x, s) changes sign at xq−1(s). Hence

sgn [Lqy(x, s)] = sgn Lq−1y(x, s)] on (xq−1(s), xq(s)).

Here xq−1(s) is bounded and xq(s) → ∞ as s → ∞. With the help of (40), we find
as in the proof of Theorem 5 that there exists a value M such that Liy(M, s) > 0,
i = 0, . . . , q, for sufficiently large s. Hence S(y, M+) ≥ q ≥ k + 1, which in turn
implies that

N(y) ≥ S(y, M+) + S(y, s−) ≥ (k + 1) + (n − k) > n.

This contradiction shows that xk(s) → ∞, completing the proof. (It is interesting
to compare the last result to that of [5].)

Remark. All the results of this work remain valid if (1) is defined on [a, b)
instead of on [0,∞), provided that

∫ b

ρ−1
i (x) dx = ∞, i = 1, . . . , n − 1.
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