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NECESSARY CONDITIONS AND SUFFICIENT CONDITIONS
FOR DISFOCALITY AND DISCONJUGACY

OF A DIFFERENTIAL EQUATION

URI ELIAS

A necessary and sufficient criterion for the (k,n — k)-
disfocality of the equation y{n) + p(x)y — 0, a < x < 6, is
proved. This criterion is used to establish explicit necessary
conditions for disfocality in terms of lower order equations
and integral inequalities. The same criterion is used to
obtain sufficient conditions, expressed by inequalities of
similar type.

1* Introduction* An nth. order linear differential equation

yin) + PiixW^ + + pn(x)y = 0 ,

whose coefficients are continuous on an interval I, is said to be
disconjugate on / if none of its nontrivial solutions has n zeros in
I (including multiplicities). If an equation is not disconjugate on
[a, 6], the conjugate point of a is defined as the infimum of the
values t,t > α, such that the equation is not disconjuate on [α, t].
If the conjugate point of a exists, it is denoted by η(a). There
exists a solution associated with the interval [α, 7}(a)]f which has a
zero of multiplicity k at x = a and a zero of multiplicity at least
n — k at x — η(a) for certain k, 1 ^ k ^ n — 1, and which does not
vanish in (α, r]{a)).

The subject of this paper is the disconjugacy of the equation

(1) y{n) + p(x)y = 0 ,

where p(x) is of constant sign. For (1) we have further information
about the solution associated with [α, ̂ (α)]. It has a zero exactly
of multiplicity k at x — a and a zero exactly of multiplicity n — k
at x = y](ri). Moreover, n — k is odd if p(x) ^ 0 and n — k is even
if p(x) ^ 0 [16].

The distribution of the zeros of the solution associated with
[α, rj(a)] suggests the following definition: Equation (1) is said to
be (k, n — k)-disconjugate on an interval / if for every pair of points
a, be I, a <b, there does not exist a nontrivial solution of (1) which
satisfies

y{ί\b) = 0, i = 0,
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The least value of b such that there exists a (nontrivial) solution
which satisfies (2), is called the (ft, n — k)-conjugate point of a.

Together with (ft, n — ft)-disconjugacy, we consider a related
concept: (1) is called (ft, n — k)-disfocal on I if for every pair of
points a, be I, a < b, there does not exist a nontrivial solution of
(1) which satisfies

( g ) 2/(<)(α) = 0 , i = 0, ••-, ft-1,

2/^(6) - 0 , i = fc, . . . , % - 1 .

The concepts of (ft, w — ft)-disconjugacy and (ft, n — ft)-disfocality
are trivial for certain values of ft. It is well known [16] that there
exists a nontrivial solution of (1) which satisfies either (2) or (3)
only if n — ft is odd and p(x) ^> 0 or n — ft is even and p(x) :g 0. Hence,
in the following discussion of (ft, n — ft)-disconjugacy and disfocality
we assume that

( 4 ) (-ir~kp(x) <0 .

Indeed, for the other values of ft, (1) is trivially (ft, n — ft)-disconju-
gate and disfocal on every interval, disregarding the magnitude of

I P G * 0 | .
(ft, n — ft)-disconjugacy and disfocality are connected by the

following theorem of Nehari:

THEOREM 1 [18]. If (1) is (ft, n — k)-dίsfocal on (α, 6), it is
(ft, n — k)-disconjugate on (α, b).

(1) is (ft, n — k)-disfocal on (α, oo) if and only if it is (ft, n — &)-
disconjugate on (α, oo).

For an alternative proof of Theorem 1, see [1, Lemma 4,
Lemma 6].

Theorem 1 is the origin of various necessary criteria and
sufficient criteria for disconjugacy. Necessary conditions are obtained
according to the scheme

disconjugacy on (α, oo) => (ft, n — k)-disfocality on (a, ©o) ^coef-
ficient condition ([2], [6], [15], [18], [20]), while sufficient conditions
follow from

coefficient condition => (ft, n — k)-disfocality for every ft =>
(ft, n — kydίsconjugacy for every ft => disconjugacy ([14]).

For example, in [15] the implication (n — 1, l)-disconjugacy on
(a, oo) => (n — 1, Vj-dίsfocality on (a, oo) has been used implicitely,
even before (ft, n — ft)-disfocality was defined.

The purpose of this paper is to show that many necessary con-
ditions and sufficient conditions for (ft, n — ft)-disfocality and
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disconjugacy, known conditions as well as new ones, can be derived
from one and the same principle.

2Φ Preliminalies* We shall base our study of (k, n — k)-
disfocality on the following two characterizations:

THEOREM 2. Equation (1) is (k, n — k)-disfocal on (a, b) if and
only if it has a solution y which satisfies

y(i\x)>0 , i = 0, . - . , f c - l ,

(-iy~ky{j)(x) >0 , j = k, , n - 1

on (α, 6).

THEOREM 3. Equation (1) is (k, n — k)-disfocal on (α, b) if and
only if there exist a function f e Cn(a, b) which satisfies

(56 ) (- iy~*f«\χ) > 0 , j = k, , n - 1 ,

(-l)*-fc[/^ + p/] ^ 0

o?2, (α, 6).

Theorem 2 was proved in [1]. For the sake of completeness we
shall prove it here again.

First we prove the necessity of (5). (1) has a unique solution
(up to a constant multiplicative constant) which satisfies the n — 1
boundary value conditions

y{ί)(a) = 0, i = 0, . . . , f c - l ,
( }

For, if #!, τ/2 are two linearly independent solutions satisfying (7)
then there exist a nontrivial solution y = c1yι + c2y2 which satisfies
(7) and y{lc)(a) = 0. But this is impossible since, as we have remark-
ed above, (1) is (k + 1, n — k — l)-disfocal if (4) is assumed.

We normalize the essentially unique solution of (7) so that

(8) Σll/(<)(α)| = l , y<*>(α)>0,
<=0

and in order to emphasize its dependence on s, we denote it by
y(x, s). An elementary arguments shows that, as result of the uni-
queness, y(x, s), , y{*~x\x, s) vary continuously with s. Actually,
y(x, s) can be written explicitely as a n x n determinant whose ele-
ments are the derivatives of n arbitrary, linearly independent solu-
tions of (1).
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When s is sufficiently close to a, y(x, s), , y{n~ι)(x, s) have in
[α, s] no zeros except the n—1 zeros which are specified in (7). For, if
one of them has another zero, then, by repeated application of Rollers
theorem, y{k)(a, s) too has a zero in [α, s]. Consequently, we have
obtained for an arbitrary small interval a nontrivial solution y such
that each of the derivatives y, •••, y{n~1] has a zero in the interval,
which is impossible. This contradiction confirms that each of
y(x, s), •• ,y{*~~1)(x, 8) has a fixed sign on [α, s]. To determine these
signs, observe that by the normalization of y(x, s), we have
ym(a, s) > 0 and thus y{k)(x, s) ^ 0 on [α, s]; integration and the first
part of (7) give the first part of (5). Now, by (4), (-l)n~ky{n)(x9 s) =
{ — l)n~k~ιp{x)y{x, s) > 0; integration and the second part of (7) give
the second part of (5). Thus y(x, s) satisfies (5) on (α, s) if s is
sufficiently close to a.

Let c be the supremum of values of s, s > α, such that y(x9 s)
satisfies (5) on (α, s). If c = ©o, the solution lim^^ y(x, s) satisfies
(5) on (α, oo) and in this case the necessity part of Theorem 2
follows. If c < oo, it will be proved that (1) is not (fc, n — &)-disfocal
on [α, c], i.e., c ^ 6. In this case we shall conclude that the solution
y(x, b) satisfies (5).

In order to prove that (1) is not (fc, n — &)-disfocal on [α, c], we
observe that as s f c, we have

yw(χ,c)^o, i = of . . . , A ? - I ,

(-l)y"*2/(/)(a?, c ) ^ 0 , i = fc, , ^ - 1 , α ^ α ^ c .

Since τ/(ί)(x, c), i = 0, •• , ^ — 1 , are monotonic functions of fixed
signs and since y(x, c) ί 0 on every interval, y(x, c) also satisfies (5)
on (α, c). On the other hand, as sic we obtain by the definition
of c that y(x, c) or one of its derivatives has in [α, c] a zero in
addition to the n — 1 zeros which are specified in (7) (for s = c).
Combining (5') and (7), 2/(ί)(#, c), i = 0, •••, k — 1, are found to be
increasing positive functions on (α, c] and they cannot have any zero
except those given in (7) at x = a. Similarly (—ϊ)j~kyU)(x, c), j =
k + 1, , n — 1, are decreasing, positive functions on [x, c). So the
derivative which has in [α, c] a zero not specified in (7) must be
y{k)(x, c) and since it is positive on (α, c) and decreasing, its only zero
may be only at x = c. Therefore (1) is not (fc, n — &)-disfocal on
[α, c]. Since (1) is (fc, n — fc)-disfocal on (α, 6), it is disfocal on [a, b)
too and consequently b ^ c. So τ/(x, 6) satisfies (5) and the necessity
part of Theorem 2 is proved.

The necessity part of Theorem 3 follows from the just proved
necessity part of Theorem 2, and the sufficiency part of Theorem 2
is a particular case of the corresponding part of Theorem 3. Hence,
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it suffices to establish the sufficient part of Theorem 3 only.
Let / satisfy (6). Suppose that (1) is not (k, n — &)-disfocal on

(α, b), i.e., there exist two points α', 6', α '<δ' , in (α, b) and a solution
y of (1) which satisfies the boundary conditions (3) at α', δ\ Let λ0

be the smallest positive value of λ such that for some m, 0 <; m <̂
n — 1, the function (/ — XyYm) has a zero in [α', &']. λ0 exists since
/ > 0 and y > 0 in (α', &')• Furthermore, λ0 > 0 since f{i) Φ 0,
i = 0, ••, n — 1, on [α', 6']. In view of inequalities (6) and the
definition of λ0,

(-l)^-*(/ - λo?/)(^ ^ 0 , i = Λ, • , 7* - 1 ,

and

(-l)-*(/ - \yYn) ^ (~iy-k-W - λol/) = \p\(f - \y) ^ 0 ,

for α' ̂  x ^ 6' and (/ — Xoy){m) has a zero in [α', &']. Now we shall
show that this is impossible.

Indeed, if 0 <̂  m <; k — 1, then,

>(α') - f{m\a') > 0

and

(/ - \yy™+1)(%) ^ 0 , α' ̂  x ^ V ,

so (/ — XoyYw) is an increasing function on [α', 6'], positive at α',
and it does not vanish on [α', 6']. If λ? <* m <̂  w — 1, (3) and (6)
give

( ) ( / 0 y ) ( ) ( ) / ( O 0

Since

(_!)»-*(/ - λo?/)^+1)(x) ^ 0 , α' ̂  a? ̂  6' ,

(—ϊ)m~k(f — \y){m) is decreasing on [α', 6'] and positive at 6', so has
no zeros on [α', 6']. This contradiction verifies that α', b' with the
above properties cannot exist in (α, 6) and so (1) is (fc, n — &)-disfocal
on (α, 6).

We shall use extensively the following lemma whose first part is
due to Kiguradze [7].

LEMMA 1. / /
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on [α, b] then

(10) (ft - i)y{i\x) ^ (x - a)y{i+ί\x) , i = 0, , &

oτ& [α, 6]. //, in addition, y{i)(ά) = 0, i == 0, , ft — 1,

(11) (ft - i - l)2/(ί)(^) ^ (a? - α)2/(ί+1)(α;) , i = 0, , fc - 1

ami y{ί)(x)/(x — α)A~ί~1 increases on (α, 6).

Proo/. For i = fc, (10) holds trivially since 2/(fc+1)0*0 ^ 0. If in
the identity

Γ [(A; - i - W + 1 ) ( ί ) - (ί - a)yiM)(t)]dt
Ja

= We - i)»(<)(a?) - (a? - α)i/ ( ΐ + 1 )(^)] - (ik - i)

we take i = fc — 1, Jk — 2, , 1, 0, (10) follows by an argument of
decreasing induction, since, according to (9), y{i)(a) ^ 0. For k — 2,
i = 1, (10) was proved in [10].

Let now 2/(ί)(α) = 0, i = 0, , k - 1. (11) holds for i = Λ — 1
since y[k)(x) ^ 0. Now we have the identity

\[[(k - i - 2)y^\t) - (ί -

= (jfc - i - l)2/(i)W - (a?

If we take in (12), i = k - 2, fc - 3, ••-,!, 0, (11) follows. Con-
sequently y[i){x){x — α)~{fc" i~1) increases.

3^ Necessary conditions*

THEOREM 4. Assume that (1) is (ft, w — k)-disfocal on (α, 6) and
let 1 <; g <; ft, l ^ m — q < n — ft. F o r ever?/ α, 0 ^ α ^ ft — g, ί/ie

mi/?, order equation (m < w)

(13) u ( w ) + (-1)—^P.CajJw - 0 ,

- l)!](a? - α)α \\t - a?) —
Ja;

is (q, m — q)-disfocal on (α, 6).

Proof. Let #(#) be a solution of (1) which satisfies (5) on (α, 6).

We consider the m + 1 consequtive derivatives
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y { ί ) ( x ) ^ 0 , i = k — q, — , k — 1 ,

and we shall find a relation between y(k~9) and y^~^m\

Taylor's formula with n — j — 1 terms around the point b for
the function yUΊ is

yi'Xx) = % χ (2/(i))(/i)(&)(^ - b)μlμ\
(14)

We substitute 2/(M) = — py, exchange the limits of integration and
multiply (14) by (-1)'-*.

x)μlμ\

+ \ (t-xy-^i-iy-^viVyimtKn-j-iy.

By (4), (-l)*"*""1^*) = |2>(*)I For k ^ j ^ n - 1, a^x^b, all the
terms in (15) are positive according to (5), hence

(16) (-iy-y>(ao

To obtain lower bounds for y(t) in (16) observe that y increases,
therefore for 0 ^ v ^ 1,

(17) y(ί) ̂  [y(t)γ[y(x)γ- , t > a?.

By Lemma 1, we have for 0 <; i ^ fc,

V(x) > (x - a)y'(x)/k ^ •••

^ (a? - aYy{i)(x)/[k(k — 1) - - - (Λ — ΐ + 1)] , α? ̂  α .

Since 2/, , j / ^ " " increases, we have for 0 <Ξ i ^ fc — 1,

(19) y(ί) ̂  (ί - xYyw(x)/il , t ^ a? .

Substituting (18) and (19) into (17), we obtain for 0 <; i <; k — 1,

»(ί) ^ »(<)(aj)(« - αΓ-^Cί - xT[{k - i)I/fc!] l-[i!r ,

t ^ x ^ α .

From (20) and (16) we deduce now that
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^ y{ί\x){x - α ) f ( 1 -

(21) f k γ

x I Λ ( k - i ) M [ k \ - ( n - j - 1 ) 1 ] .

Finally, we choose j = k — q + m(^k), i — k — q(^k — 1) and we set
a = (fc - g)v. Since ί!/r! ^ (Z + l)!/(r + 1)! whenever Z ̂  r,

& V (k~i)\ = I k Y q[

i ) k\(n - j - 1)! ~ \qj (n - m - 1 + q - k)\k\

^ q\ ^ ml
(n — m — 1 + q) (n — 1)!

and (21) gives

x (a? - α) α Γ( ί - xy-m~ι-a\<p{t)\dt m!/(w - 1)!

Since 0 ̂  v ^ 1, we haue 0 <>a <:k - q. The function /(a) = y{k~q)(x)
satisfies according to (5) and (22),

(-l)w-9[/(w)W + (-D-^^x)/] ^ 0

on (α, 5). By Theorem 3, (13) is (g, m — g)-disfocal on (α, 6).
Theorem 4 is valid for b = oo also. If (1) is (fc, 7i — fe

on (α, oo) and y is a solution which satisfies (5) on (α, oo), then (22)
holds for every δ? a < 6 < oo. Hence (22) holds for b = oo also and
(13) is (g, m — g)-disfocal on (α, oo). For m = 2, g — 1 compare with
Theorem 2 of [12] and Theorem 1 of [13].

THEOREM 5. Let (1) be disconjugate on (α, oo) and let 2 ̂  m :g
% — 2. T%e% ί/̂ e £κ;o equations

(23) u ( m ) +.Pα(a?)w - 0 , u{m) - Pa(x)u = 0

(where Pa(x) is defined in the statement of Theorem 4), are discon-
jugate on (α, oo) for 0 <. a <: n — m — 2. Furthermore, one of the
above two equations, namely

(24) u{m] + [-sgn p]Pa(x)u = 0

is disconjugate on (α, oo) / o r 2 <̂  m <; w — 1, 0 ^ α ^ ^ ~ m — 1.

Proof. If (1) is disconjugate on (α, oo), i t is (k, n — &)-discon-
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jugate and hence, by Theorem 1, (k, n — &)-disfocal on (α, <*>) for
every k, 1 ^ k ^ n — 1. We shall use this property to show that
equations (23) are (q, m — #)-disf ocal and (q, m — #)-disconjugate on
(α, oo) for every q, 1 <̂  q <̂  m — 1. This, in turn, will imply that
the above equations are disconjugate.

Let q, 1 <̂  q <̂  m — 1, be given. One of the equations (23) is
trivially (q, m — #)-disfocal since the corresponding necessary condi-
tion, similar to (4), it not satisfied. For the other equation, we
have to find an integer k, such that q ^ k, m — q < n — k and
( — l)n~kp(x) <; 0. We choose n — k — m — q + \oτ n — k — m — q + 2
so that (4) will be satisfied. Accordingly k — q will be n — m — 1
or n — m — 2 and so we may take 0 <. a <^ n — m — 2 in Theorem 4.
It follows now by Theorem 4 that the appropriate equation of (23)
is (q, m — g)-disfocal and hence (q, m — (j)-disconjugate on (α, oo).
Thus equations (23) are disconjugate there.

For (24) we are interested in those values of q, which satisfy
( — l)m-i[—sgnp]P(x) ^ 0, i.e., (-l)m" gp ^ 0. For such q we choose
n — k = (m — q) + 1, i.e., k — q + (n — m — 1). This choice fits
Theorem 4 whenever n ^ m + 1 and we may take 0 ^ a ^ n — m — 1.
The proof now follows by Theorem 4. For n = 3, m = 2, compare
with [2].

The proof of the next theorem is analogous to that of Theorems
4 and 5.

THEOREM 6. If (1) is disconjugate on (α, °°), then the mth
order equation (2 ^ m < n),

(25) u{m) + [ml/n\](x - a)n~mp(x)u = 0

is disconjugate on (α, oo).

Proof. It suffices to prove that (25) is (q, m — g)-disfocal on
(α, oo) for every q, 1 <; q ^ m — 1, such that ( —l)m~?p(ίc) <: 0. Let
q be such an integer. Since (1) is disconjugate on (α, oo), it is
(n — m + q, m — g)-disfocal on (α, oo) and it has a solution y such
that

V{ί) > 0 , ΐ = 0, . . . f w - m + g - l ,
(_i)ί-c-»+«'1/(ί) > o , i = w - w + g, , w .

Consider the derivatives y{n~m), •••, 2/(κ). We have

( i r i / ( a ; ) / 2 / ( a ; ) ( D p C x M α W ' ( a s )



388 URI ELIAS

By Lemma 1,

y(x) ^ (x — a)y\x)l(n — m + g)

^ . . ^ (x - α)%-m7/(%"m)W g!/(w - w + g)!

Since m> q, we have g!/(w — m + g)! ^ m\/n\ and so by (27),

(28) (-l)m-qy{n\x)ly{n-m\x) ^ |p(a?)| (a? - a)%~mm\ln\

If we denote / = y{n~m\ (26) and (28) yield

/ ( ί ) > 0 , i = 0, « , g - l ,

(-1)—*[/<-> + (m!/n!)(a? - α)-m2)(a;)/] ^ 0 , α ^ x £ °° .

By Theorem 3, (25) is (g, m — g)-disfocal on (α, °°) for every g,
1 <: g ^ m — 1, such that (—l)m~qp{x) <: 0, hence (25) is disconjugate
on (α, oo). For n — 3, m = 2, see [10]. For p ^ 0, m = 2, compare
with [4].

The techniques of the proof of Theorem 4 provide more necessary
conditions for (fc, n — fc)-disfocality. If in (21) we take j = fc,
i = & — 1, then

(29) yik)W = ya1](χ) (« ~ α) ( f c 1 )

x

By (10), y{k-1](x) ^ (x - a)y{k\x). Substituting this inequatity into
(29) and setting a = 1 + (ik — 1)(1 — v), we obtain the necessary
condition

(30)

α ^ a? ̂  6, for every #, 1 <; α ^ &.
It is well known that (1) is (fc, n — fe)-disf ocal if and only if the

adjoint equation

(31) tn) + ( - l ) p(aθv - 0

is (^ — k, A;)-disfocaL Hence in (30) we may replace k by n — k and
obtain the necessary condition

(32) <* ~ α

^ (Λ - k){a-ί)nn-k-ι\k - l ) ! (n - fc - 1)!
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for a, 1 <: a <^ n — k. For n ~ 4, jt> ̂  0, compare (30) and (32) with
Theorem 3.3 of [6].

A useful particular case of (30) (for a = 1) is the necessary
condition

(33) (x - a) \\t - xY~2\v{t)\dt ^ (fc - 1)! (ra - Jfc - 1)!

THEOREM 7. 7/ (1) is (fc, n — k)-disfocal on (0, oo) £β,ew

(34) α? Γ t"-2\p(t)\dt ^ e'(ra - l)(fc - ϊ)\(n - k - 1)1 0 < x < oo .

Proof. In (33) we choose α = 0, 6 = oo and diminish the domain
of integration from (a?, °o) to (/So?, oo), where β > 1. For £e[/2#, oo)
we have t — a? ̂  (1 — l//3)ί and so

(n-k- l)\(k ~1)\ ^x Γ (t - ^)%

^ (1 - l/βY-^iβx)

for every 0 < x < oo. Denote u = βx. Then

iβ*" 1 ^ - 1)"(%~2)(^ ~ k - 1)1 (k - 1)1

for every 0 < u < oo, and (34) follows if we choose β = w — 1. For
comparison note that Nehari proved the necessary condition

(35) x" Γ t-^lpOOIdt ^ (n - l)2(fc - 1)!(% - k - l)!/α

for 0 < a <>n — 1 [17, Theorem 5.3]. For even n and k = n — k,
see [19].

If (1) is disconjugate we take an integer k which satisfies (4)
and which minimizes the right hand side of (34). For odd n we
choose either k = (n — l)/2 or & = (^ + l)/2 and for even n9 either
k = n/2 or fc = nj2 + 1. In either cases, (k — l)l(n — k — 1)! ^

w/2 - 1]! Thus if (1) is disconjugate on (0, oo) then

(36) x Γ tn~2 \p(t)\ dt ^ e(n - l)[n/2] \ [n/2 - 1]! 0 < x < oo
JίB

(36) is stronger than the condition (7.10) or (7.12) of [18] and of
course, than that of [15].

The constants on the right hand side of (30) and (32) increase
with a, while the right hand side of (35) is a decreasing function
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of a. This phenomenon is not unnatural. Indeed, for a = 0, b = <»,
and p(x) = cx~n, the integrals in (35) and (30) are

x" \ tn-a~1 ct~ndt = c/a ,
J X

xa Γ (ί - α)*-- 1 σt' dt = cΓ(a)Γ(n - α

Γ{a)Γ{n — a) increases for a ^ nJ2, and since min {k, n — k) ^ n/2,
the left hand side of at least one of (30) and (32) increases.

We do not know what is the best (smallest) constant N(a) which
can be taken on the right hand side of (30) (or (35)) to provide a
necessary condition for (k, n — &)-disfocality. However, for a =
(β + 7)/2 we have

(x — a)a \ (t — x)n~a~ι\p\dt tS>(x — ay\ (t — x)n~β'
L_ J X J J X

x (x - a)r \ (t - XT'?-1

Jx

Hence [N(β + 7)/2)]2 ^ N(β)-N(y). Both the constants in (30) and
(35) satisfy this inequality.

4. Sufficient conditions* Theorems 2 and 3 enable us to obtain
sufficient conditions for (fc, n — &)-disfocality of (1). Our next theorem
generalizes Theorem 5.1 of [18] and suggests also a simple proof to
that theorem.

THEOREM 8. Given q, k ^ q ^ n — 1. (1) is (k9 n — k)-disfocal
on (α, 6) if and only if there exists a nonnegative function ReCg

which satisfies R{i)(a) ^ 0 , ί = 0, , k — 1, ( — ΐ)3'~kR{3Ί(b) ̂ 0 , j =
k, , q — 1 cmeZ

(38) (-l)9-fci2(ί)(α;) ^ \\t - xy-o-'lpWRWdt/in - g - 1)!

Proof. For q = k, this is Theorem 5.1 of [18]. To prove the
necessity part of the theorem we take R(x) as a solution ?/ of (1)
which satisfies (5). (38) follows then from (16) for j = q.

To prove the sufficiency part of the theorem, we integrate (38)
repeatedly on [x, 6]. By the assertion ( — l)j~kR{j)(b) Ξ> 0, j =
&, , g — 1, we obtain after # — & integrations
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(which, actually, is the assumption of Theorem 5.1 of [18]).
Integrating k times on [a, x], we obtain

( 3 9 ) f "

+ j (sc — β ) *

Let

f(x) = ['(x- β)*-ι(*(ί - βy-^pffilRifidtda/Wc - 1)1 (n - k - 1)!]
Joe J s

Differentiation gives
/ ( 1 ) ( a 0 ^ O f i = 0 , . . . , f c - l ,

(-l)y-*/ ( y )(«) ^ 0 , j = k, - , n - l , a^x^b .

By (39), i2(aθ ^/(a?), so to the end

( - l ) - * / ( )(a.) = \p(x)\R(x) ^ \p(x)\f(x) - ( - D - ^ p ί a ? ) / ^ ) ,

i.e.,

and (1) is (fc, ^ — &)-disfocal by Theorem 3.
Explicit sufficient conditions can be derived from Theorem 8 by

choosing a suitable function R. If we set R(x) = (x — a)k~% 0 < v < 1,
we obtain that if for some integer q, k ^ q ^ n — 1, and 0 < v < 1.

(a? - aY~k+v \\t - α ) - " - * ™ - 1 ! ^ ) ! ^
(40) J*

^ (n - g - 1)! Π |g - k + v - i

a ^x ^b, then (1) is (fc, ^ — &)-disfocal on (α, δ), α < δ ^ oo. Note
that for g = fc, y = 0 is permitted also. For g = k, see (5.20) of

[17].
If we set R(x) = (x — α ^ l o g ζ a j — a), we obtain (by using the

identity {xk~ι log x){k) = (fc — 1)! α?"1) the sufficient condition

^(fc - 1 ) ! (g -fc) ! (Λ - 9 - 1 ) !

which generalizes (40) for v = 1.
Our next goal is to obtain sufficient conditions for (k, n — k)-

disfocality of the form
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(x - af \\t - ay-^lpWldt ^ c(a)
Jx

for additional values of a. For this purpose we generalize Theorem
4.5 of [3]:

THEOREM 9. Let the equation

(42) tn) + p,(x)y = 0

be (ft, n — k)-dίsfocal on (α, δ) and let f(x) be a positive, differentiate
function such that f(x)/(x — a)k~ι is nonincreasing on (α, δ). If
sgn [Pί(x)] = sgn [p(x)

( 4 3 ) Γ / ( * ) I p ^ ί ) ! d ί ^ Γ / ( « ) | p ( ί ) | d ί , a ^ x ^ b ,
Jx Jx

then (1) is (ft, w — k)-disfocal on (α, 6).
If b = ooff(χ) is nonincreasing and (43) holds, then the discon-

jugacy of (42) implies the disconjugacy of (1) ow (α, oo).

Proof. The first part of the theorem, with / = 1, is proved
in Theorem 4.5 of [3] as a consequence of a comparison theorem for
an associated eigenvalue problem. That proof is based on the theory
of u0-positive operators. We shall prove now the theorem as a
corollary of Theorem 8.

Let y(x) be a solution of (42) which satisfies (5). By the proof
of Theorem 2, we may assume without loss of generality that
y{i)(a) = 0, i = 0, , ft — 1. According to Lemma 1, y(x)/(x — α)*"1

is a nondecreasing function hence also

y(χ)/f(χ) = [y(χ)Kχ - a)^] [(* - α)*-

is nondecreasing. By (16) we have for j = n — 1

(_l)-i-y.-i>(a.) s; \b\Pl(t)\v(.t)dt .
J a;

Now we show that

[^[\v(t)\y(t)dt.
J

Indeed, y/f does not decrease, hence we have by (43) and the second
mean value theorem,

\Pi(ί)\v(ί)dt - Γ \p{t)\y{t)dt = Γ [ | P l | / - \p\f] [y/f]dt
x Jx JX

\\lPj - \p\]fdt
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Therefore

(_l) -i-y.-i>(a.) 2> [ \p(jb)\y(jt)dt .
Jx

Hence R = y satisfies the assumptions of Theorem 8 for q = n — 1
and consequently (1) is (ft, w — ft)-disfocal.

Our theorem holds even if b = °o, since as 6 —> ©o, the appropriate
limits exist. First, y(x)/f(x) is nondecreasing, hence y(x)/f(x) ^ A
for a certain constant A > 0. Therefore,

(_l) -i-y-i)(a.) ^ ίδ \Pl(t)\v(t)dt ^ A
Jo;

S r oo

iPill/dί, I |2>i|/d* exist, ξ depends on b and we
may choose a sequence {6J, 6*—> c>o, such that f(6<) converges to a
limit (^oo). So, as δj—» oo, also the terms which contain ξ must
converge to finite limits, and the theorem follows.

The last detail of the theorem follows from the fact that (1) is
disconjugate on (α, ©o) if and only if it is (fc, n — &)-disfocal on
(α, oo) for every k, 1 ^ k ^ n — 1.

Let us use Theorem 9 to compare (1) with the equation

(44) y{n) + c(x - a)~ny = 0 , a < x < oo .

2/ = (x — α ) r is a solution of (44) if r is a root of the algebraic
equation

r(r - 1) (r - n + 1) + c = 0 .

If (44) has a solution # = (# — α) r with fc — 1 < r < k, it is (/&, n — k)
disfocal on (α, oo) by Theorem 2. If we define

(45) Ak

 ύ= max {r(r - 1) . . (r - k + ϊ)\r - ft| \r - n + 1|} ,
A;-Kr<fc

then (44) is (fc, % - fc)-disforcal for c, 0 ^ ( - l ) - * c ^ Λ
We put in (43) |^(«)| = Ak(x - α)"M, /(x) = (x - α)"""- 1, n - k ^

a < co. By Theorem 9 we obtain that if

(46) (x - a)a \" it - ay-"'1 \p(t)\ dt ^ AJa , a < x < <χ> ,
Jx

then (1) is (ft, w — fc)-disfocal on (α, 6).
We have already mentioned that (1) is (ft, n — ft)-disfocal if and

only if its adjoint (31) is (n — ft, ft)-disfocal. Since An_k — Akf we
may take in (46) values of a, min {ft, n — ft} ^ a < ©o. The criteria
(46) for different values of a cannot be compared with each other,
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since both sides of (46) decrease with a. For n = 4, p < 0, compare
(46) with Theorem 4.5 of [6].

To summarize, we restate (40) and (46):

COROLLARY. Each one of the inequalities

(47) {x - afΫ {t - aγ-^\

[cc+Jc]

(n - [a + k] - 1)1 Π \a-i\0^a<n-k
i = l

a Φl, 2, ••-,% — k — 1

AJa min {fc, n — &} <; α < oo

implies the (k, n — k)-disfocality of (1) on (a, ό).

Indeed, for 0 < a < n — k, a noninteger, set in (40) a = q —
k + v where 0 < v < 1, q = [a + k\. Then fc <: g <: % — 1. For
<x = 0, (47) follows from (40) for q — k, v = 0 (which is permitted).
For 0 ^ a < 1, compare (47) with (5.20) of [17]. For n = 4, p < 0,
see also Theorem 4.5 of [6].

We end this discussion by the following simple bound for Ak.
If 1 <C k < n — 1, we take in (45) r — k — 1/2 and obtain that

Ak ^ {(&-l/2).(fc-3/2)(5/2)(3/2)(l/2)}{(l/2)(3/2) (w-&

^ (A; - 1 ) ! (3/2)2(l/2)2(« - k -1)! = (9/16) (Jc -1)! (n - k - 1 ) !

If (47) holds for every k, 1 ^ k S n — 1, (1) is disconjugate. If
we choose for example a = n — 1 and replace Ak in (47) by A =
min {Al7 , A ^ J we obtain that

(x - af-1 \" \p(t)\dt ^ A/(n - 1)
Jx

implies the disconjugacy of (1) on (α, 6). From (48) we have the
trivial bound A ^ ([n/2 - l]!)2/2. See also [8], [9].

More necessary conditions and sufficient conditions can be obtained
by change of variables in (1).

LEMMA 2 [5]. Let y(x) be a solution of (1) and let ζ =
(ax + β)/(jx + <?). The function u(ξ) = (a - 7ί)%~1?/((δf - β)/(-Ύξ + a))
is a solution of the equation

(49) *ϋi +
2Γ (α - 7 ί Γ

If τ/(x) has a zero of certain multiplicity, then obviously u(ζ)
has a zero of the same multiplicity at the corresponding point.
Hence (1) is disconjugate on an interval if and only if (45) is dis-
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conjugate on an corresponding interval. Moreover, (1) is (&, n — k)-
disconjugate if and only if (49) is (k, n — &)-disconjugate, provided
that ad — βy > 0. When ay — βy < 0, i.e., the Mobius transforma-
tion inverts the orientation, (1) is (k, n — &)-disconjugate if and only
if (49) is (n — k, &)-disconjugate. The invariance of disfocality is
not self evident. However, on an infinite interval (fc, n — &)-disfocality
and (k, n — &)-disconjugacy are equivalent. Hence if ξ — ξ(x) maps
(al9 oo) onto (α2, oo), not only disconjugacy survives but disfocality
also.

For example, the transformation ξ — a = (x — α)" 1 maps (α, oo)
onto itself and reverses the orientation. (1) is transformed into

(50) u^ + ( - l ) (f - a)-2np(a + (f - a^u = 0 ,

and (1) is (fc, n — fc)-disconjugate and disfocal on (α, oo) if and only
if (50) is (n — k, A;)-disconjugate and disfocal on (α, ©o). Let ck(a) be
the right hand side of (47), i.e., let

(x - a)a [° (t - ay-'^lpφldt ^ ck(ά) , a < x < oo
Jx

ensure the (&, n — &)-disfocality of (1). Similarly

(51) (ξ - ay J~ (t ~ α)-β-M(ί ~ α)~2% |p(α + (ί + α)

implies that (50) is (w — fc, fc)-disfocal and disconjugate on (α, oo)

hence (1) is (k, n — &)-disfocal and discon jugate on (α, oo). By setting

t — a — (β — a)~\ (51) reduces to

(* - ay+^Msyds ^ en.t(a) , a < ξ < oo .
a

If we substitute u — a — (ξ — α)"1, (52) is equivalent to

(u - α)~α (*(β - aT^-'lpis^ds ^ c ^ ί α ) , a < u < °° .
J

COROLLARY. 1/

(53) (a? - α)"α ί"(β - a)%+*-ι\p(8)\d8 ^ cΛ_4(α) , α < x < b

then (1) is (fc, w — k)-disfocal on (a, b).

For δ = oo, the corollary was proved above. When b is finite,
we may define p(x) — p(x) for a ^ x ^ 6 and j5(&) = 0 for b <x < oo.
Then (53) holds, with p replacing p, on (a, oo) and the corresponding
equation is (k, n — &)-disfocal on (α, oo), in particular on (α, 6).
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Similarly, the necessary conditions (35) of Nehari are transformed
to

(54) x~a Γsw+α-M3)(s)|d3 ^ (n - l)\k - 1)! (n - k - 1)1/a
J a

for 0 < a <; w — 1. For w = 2 see [14, p. 432] and for n = 4, p < 0,
see Theorem 3.2 of [6].

Finally we obtain conditions specific for a compact interval. The
transformation ς = (x — α)/(& — x) maps (α, 6) onto (0, oo) and keeps
the orientation. (1) is transformed into

(55) u™ f (b - a)n{I + £)-8np((&£ + α)/(f + ΐ))u = 0 , 0 < f < -

and (1) is (fc, w — fc)-disconjugate on (α, 6) if and only if (55) is
(fc, % — fc)-disconjugate and disfocal on (0, oo). By (47), if

α)/(ί + ϊ))\}dt £ ck(a) , 0 < ξ < ™

then (55) is (Jc, n — fc)-disconjugate and disfocal on (0, co). Substituting
t = (s — a)/(b — s) and ξ ~ (x — a)/(b — x) we obtain the sufficient
condition.

(56) (*JZJL)"\h {p ~ a)n-n'\b - s ) * ^ - 1 ! ^ ) ! ^ ^ cΛ(α)(δ ^- a)n~ι ,
\& — av J«

α < a? < b ,

for (fe, n — /b)-disconjugacy. By using (53) instead of (47) for equa-
tion (55), we can exchange the roles of a and b in (56).

For a = 0, (56) gives a weaker but simpler sufficient condition

(57) [ ( s - a ) * - \ b - s ) n ~ ι \ p { s ) \ d s ^ ( 5 - a ) n ~ \ n - k - 1)1 ft I

Levin found the same condition with the better constant
(6 - a)*-\n - k - 1)! (ft - 1)! (n - 1) [11].

Necessary conditions of similar type are available from (35).

REFERENCES

1. U. Elias, Oscillatory solutions and extremal points for a linear differential equation,
Arch. Rat. Mech. Anal., to appear,
2. G. J. Etgen and C. D. Shih, Disconjugacy of third order differential equations
with nonnegative coefficients, J. Math. Anal. Appl., 4 1 (1973), 420-425.
3. R. D. Gentry and C. C. Travis, Comparison of eigenvalues associated with linear
differential equations of arbitrary order, Trans. Amer. Math. Soc, 223 (1976), 167-179.
4. R. Grimmer, Comparison theorems for third and fourth order linear equations,
J. Differential Equations, 25 (1977), 1-10.



NECESSARY CONDITIONS AND SUFFICIENT CONDITIONS 397

5. R. Hadass, On the zeros of the solutions of the differential equation y(n) + py = 0,
Pacific J. Math., 31 (1969), 33-46.
6. H. Howard, Oscillation criteria for fourth order linear differential equations,
Trans. Amer. Math. Soc, 96 (1960), 296-311.
7. I. T. Kiguradze, Oscillation properties of solutions of certain ordinary differential
equations, Soviet Math. Dokl., 3 (1962), 649-652.
8. W. J. Kim, On the zeros of the solutions of y(n) + py = 0, J. Math. Anal. Appl.,
25 (1969), 189-208.
9. V. A. Kondratev, Oscillatory properties of solutions of the equation y{n) + py — 0,
Trudy. Moskov. Mat. Obsc, 10 (1961), 419-436.
10. A. C. Lazer, The behavior of solutions of differential equation ytfr -V pyf 4- qy — 0,
Pacific J. Math., 19 (1966), 435-466.
11. A. Ju. Levin, A Fredholm equation with a smooth kernel and boundary value
problems for a linear differential equation, Soviet Math. Dokl., 5 (1964), 1415-1419.
12. D. L. Lovelady, Oscillation and a class of odd order linear differential equations,
Hiroshima Math. J., 5 (1975), 371-383.
13. t Oscillation and even order linear differential equations, Rocky Mountain
Math. J., 6 (1976), 299-304.
14. Z. Nehari, Oscillation criteria for second order linear differential equations,
Trans. Amer. Math. Soc, 85 (1957), 428-445.
15. , Non oscillation criteria for nth order linear differential equation, Duke
J. Math., 32 (1965), 607-616.
16. , Disconjugate linear differential operators, Trans. Amer. Math. Soc, 129
(1967), 500-516.
17. , Nonlinear techniques for linear oscillation problems, Trans. Amer. Math.
Soc, 210 (1975), 387-406.
18. , Green's functions and disconjugacy, Arch. Rat. Mech. Anal., &2 (1976),
53-76.
19. W. Simons, Some disconjugacy criteria for self adjoint linear differential equa-
tions, J. Math. Anal., 34 (1971), 445-463.
20. C. C. Travis, Comparison of eigenvalues for linear differential equations of order
2n, Trans. Amer. Math. Soc, 177 (1973), 363-374.

Received November 17, 1977 and in revised form June 17, 1978.

CARNEGIE-MELLON UNIVERSITY

PITTSBURG, PA 15213

Current address: TECHNION HAIFA, 32000 ISRAEL






