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FOCAL POINTS FOR A LINEAR DIFFERENTIAL 
EQUATION WHOSE COEFFICIENTS ARE OF 

CONSTANT SIGNS 
BY 

URI ELIAS 

ABSTRACT. The differential equation considered is y((n) + p (X)y( = 0, 
where aipi(x) > 0, i = 0, . . ., n-1, ai = ? L The focal point (a) is 
defined as the least value of s, s > a, such that there exists a nontrivial 
solution y which satisfies y(')(a) = 0, ai ?i+I > 0 and y(')(s) = 0, ?i?i+l < 0. 
Our method is based on a characterization of D (a) by solutions which satisfy 
9iy(i) > 0, i =, . . ., n-1, on [a, b], b < (a). We study the behavior of 
the function D and the dependence of D (a) on po, . . ., Pn- 1 when at least a 
certain pi(x) does not vanish identically near a or near t (a). As an 
application we prove the existence of an eigenvalue of a related boundary 
value problem. 

1. In the study of oscillatory properties of a linear differential equation 

y (n) + Pn_I WY ( m - ) + * * * + Po (X)y = ?'(1 

certain solutions which satisfy some particular boundary conditions have an 
important role. For example, the (k, n - k)-focal point of the equation 

y(n) + p(x)y = , (2) 

associated with the point a, is defined to be the infimum of the values of s, 
s > a, such that there exists a nontrivial solution of (2) which satisfies 

y ')(a)-O, i=O,...,k- 1, 

y (i)(s) =0, i =k, . . ., n-1. 

It turns out that the (k, n - k)-focal points and the associated solutions are 
useful tools for the study of the disconjugacy of (2) [6]. 

The concept of (k, n - k)-focal point was generalized by Keener and 
Travis [5] for the equation 

n- 

y(n) 
- 

( l)nk- pi(x)y(i) = 0 (3) 
i=O 
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where 

p,(x)>O, i= O,.. ., k-1, 

(l)i-kp(x) >o, i=k,... ,n-1. 

In the present study we shall define focal points for (1), when each of the 
functions po(x), . . . , pn, - I(x) is of an arbitrary constant sign on (0, oo). We 
assume that sgn[pA(x)] = ai, i = O, . . . , n - 1, where ai is + 1 or - 1 (when 
pi(x) 0 O for certain i, ai will be determined arbitrarily). For this equation we 
shall be interested in the solutions which satisfy 

sgn[y(i)(x)] = ai, i = O, . .. , n -1. 

For such a solution, y (n) =-E: py(i) v 0, so it will be convenient to define 
ag = -1. 

For equation (1) we define the focal point of a as the infimum of the values 
of s, s > a, such that there exists a nontrivial solution of (1) which satisfies 
the n boundary conditions 

y(i)(a) = 0, ai +aI > 0, 

Y(?)(s) 0= ? aiai+ I < ?, 0 O ... ., n -1 (4) 
The focal point will be denoted by D (a). Clearly g (a) > a. We shall see later 
that if po(x) is not eventually vanishing, then t (a) < oo for every a, except 
perhaps for equation (3). 

The number of boundary conditions of (4) at a is the number of the sign 
changes in the sequence ao0,- a1, ... , (- l)n"a. Denote this number by k and 
recall that an = - 1 and o0 = sgn[po(x)]. If po m 0, a0 is uniquely defined, so 
k is even if sgn[po(x)] = (- 1)n- and k is odd if sgn[po(x)] = (- 1)n. We 
may summarize this in the single condition 

n-l kpo(X) 6~ O. 

The basis of the study of (3) by Keener and Travis in [5] is the eigenvalue 
problem 

n-I 
y(n) - ( _ l)n-k E pi(x)y(i) = 0, 

i=O 

y(i)(a) = o, i = O, ... , k-1, (S) 
y(i)(b) = O, i = k, ..., n- 1. 

(5) is replaced by an equivalent integral equation and it is proved that if 

pO(X) > 0, 
pi(x)>O, i=l,...,k-l 
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then the problem has a positive eigenvalue and this eigenvalue is a strictly 
monotone decreasing function of b. This is established in [5] by the theory of 
tt0-positive operators with respect to a cone in a Banach space. The relation 
between the existence of focal points of (3) and the existence of a smallest 
positive eigenvalue of (5) is used to prove other properties of focal points. For 
related eigenvalue problems see [3], [7]. 

Our methods of proof are essentially different. We base our study of focal 
points on the following characterizations, which are proved by elementary 
arguments: 

THEOREM 1. D (a) > b if and only if (1) has a solution y such that 

a1y(i)(x) > 0, i = 0, . . ., n-1, a < x < b. (6) 

THEOREM 2. D (a) > b if and only if there exists a function f E C' such that 

ajf () > O, i = O, ..., n -1 

f(") + , pjfi < O, a < x < b. (7) 

We shall see that Theorems 1 and 2 have meaning even if (4) is in fact an 
initial value problem. 

Examples (i)-(iv) will show that if we only assume that aipi(x) > 0, i= 
O, ... , n - 1, then D is not necessarily continuous nor strictly increasing. 
However, very slight assumptions about po' .... Pn-1 may guarantee nice 
properties of D (a). We shall assume that either q,, an > 0 and Eq_-IIpi(x)j m 
o near a or an an < 0 and Eq -X pi(x)I m 0 near t(a), where q is the least 
integer such that qaq +I = . = an_-Io. Then g is a strictly increasing, 
continuous function. Moreover (a) depends continuously on po' .... Pn -I 
and if PO, ... P- are replaced by PO . .n-I ajpj > aqjs > 0, i= 
O,... , n - 1, then the focal point strictly grows (unless pi-Fp, i = 0,..., 
n - 1). 

As an application we show how the focal points can be used to prove that 
the problem 

n-I 

Y(n) + A E (i) = 0 
i=O 

y(i)(a) = 0, aiai+I > 0, 

y(i)(b) = 0, aia+ I < 0, 

has a positive eigenvalue if X:q-Ipj(x)I 0 in [a, b]. 

2. The necessity part of Theorem 2 is a particular case of the necessity part 
of Theorem 1, since we may choosef as the solution of (1) which satisfies (6). 
And conversely, the sufficiency of Theorem 2 implies that of Theorem 1, 
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since a solution which satisfies (6), satisfies (7) trivially. Hence, we shall show 
that (6) is a necessary condition and (7) is a sufficient condition for D (a) > b. 

Necessity of Theorem 1. By the definition of D(a), for every s, a < s < t(a), 
only the trivial solution of (1) satisfies the homogeneous boundary conditions 
(4). Consequently, there exists a unique solution of (1) which satisfies 

y( )(a) = ai, Gi i+ 1 > 0, 

y W (s) = ai, iai+aI < 0. (8) 

Moreover, this solution y,(x) depends continuously on the parameter s, 
a < s < (a). For, let {Y1, . . . ,y,n} be an independent set of solutions of (1). 
Then there exists a solution y = :jj I cjyj which satisfies (8) if and only if the 
nonhomogeneous system of n linear equations 

n 

E c,y5i)(a) = ai, ai + 1 > 0, 
j=1 

n 

E cjy5i(s) = vi, 0aial <0, (9) 
j=1 

has a nonvanishing determinant, i.e., if and only if the the corresponding 
homogeneous system has only the trivial solution. y,(x) = E cj(s)yj(x) is a 
continuous function of s since cj(s), j = 1, . . . , n, which are defined by (9) 
are continuous for s, a < s < D (a). 

For s = a, ay (i)(a) = 1, i =O, . . ., n-1; hence ay 0) > O on a neigh- 
borhood of a. By the continuous dependence of y, on s we have for s 
sufficiently close to a 

ay' (x) > 0, i = O, . . ., n-1, a < x < s. (10) 

Define so to be the supremum of the values s, a < s < t (a), such that ys 
satisfies (10). Clealry, a < so < D(a). To complete the proof, we shall show 
that so = D (a) and since b < D (a), the solution Yb will satisfy inequalities (6). 

Suppose on the contrary that so < D (a). By the definition of so, ys satisfies 
(10) for every s < so. But y, depends continuously on s, for a < s < D (a), in 
particular for s = so. So as s -- so - , we have by (10) 

lgysU) (x) > O, i = O, . . . , n - 1, 

anYs(o)(x) = p pi(x)Yso(x) > 0, a < x < sO. (11) 

However, if aia+ I > 0 then by (8) and (1 1) 

ay( (a)= 1, 

(+ 1) U1= a+ )(x) > 0, a < x < sos 

and so ,yS$') is a nondecreasing, positive function on [a, so]. Similarly, if 
aiai+I <0, then 
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aiYs(so) = 1, 

iy(oi+)(x) =U-a + y 1)(x) < 0, a < x < so, 

and , is a nonincreasing, positive function on [a, so]. Thus, (10) holds also 
for s = so, and consequently there exists e > 0 such that 

gyio (X) >0, i=O,...,n-l,a-e < x <sO+e. (12) 

Since we assumed that so < D (a), ys depends continuously on s for so < s < 
' (a). It follows by (12) that for s sufficiently close to so and s > so, ys satisfies 

(10). This contradicts the definition of so and proves that so= ;(a). Now, 
since b < t(a) = so, the solution Yb satisfies (6). 

Sufficiency of Theorem 2. Let f satisfy (7) on [a, b] and suppose that 
t(a) < b. Lety be a solution of (1) which satisfies the boundary conditions (4) 
at the points a and '(a), a < t(a) < b. We shall achieve a contradiction, thus 
proving t(a) > b. 

Let Xo be the smallest value of X, X > 0, such that at least one of the 
functions (f - Xy)('), i = 0, . . . , n - 1, has a zero in [a, ;(a)]. Xo exists since 
aof > 0 on [a, ; (a)] and we may assume that aoy > 0 at one point of 
[a, t (a)] (otherwise we replace y by -y). Furthermore, Ao > 0 since f(i) # 0, 
i = 0, .. . , n-1, on [a, ;(a)]. By (7) and the continuous dependence of 
(f - Xy)() on X, we have 

'gi(f - oY)(i) > O, i =O, ... ., n -1 

an(f- XoYn > Pi(f- Xoy)(i) > 0, a < x < ~ (a) (13) 

We shall show that no (f - Xoy)(') can have a zero in [a, ' (a)], thus 
contradicting the definition of Xo. For ai i+I > 0 we have by the boundary 
conditions (4) which y satisfies at a and at ; (a), ai (f - oy)(l)(a) - (')(a) 
> 0, and by (13) 

ai(f - XAOy)+ l)(x) = Ti+ I (f - Xoy)(i+ l)(x) > 0, a < x < t (a). 
Hence ai(f - Soy)(i) is a nondecreasing positive function on [a, t(a)1 and it 
does not vanish there. Similarly, for aiai+I < 0 we have ai(f - Xoy)(')(' (a)) 
= a1f(i)(; (a)) > 0, and by (13), oi(f - AOy)('+ )(x) = -i+ I(f -Oy)('+ 1)(x) 
< 0, a < x < '(a), i.e., oi(f - Xy)(i) is a decreasing, positive function on 
[a, (a)] and it has no zeros there. This contradicts the definition of Xo and 
the sufficiency part of Theorem 2 is proved. 

It may be interesting to note that Theorem 1 holds even if the boundary 
conditions (4) are in fact initial value conditions. When a0 = a, = . = On 
= - 1, (4) turns out to be an initial value problem which, independently of s, 
is satisfied only by the trivial solution and so, by definition, t(a) = so. In this 
case, the solutiony of 
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y(n) = (_pi)y(i), (-Pi) > 0, 

y(A)(a) > 0, i = O,.. ., n-1, 

is easily seen to satisfy y, y', . .. . ,y(nl-) > 0 on [a, oo) an -y satisfies (6) 
there. When ai = (-1)n +, i = 0, ..., n -1, (4) is y(')(s) -0, i = 0, .... 
n - 1, and once again ?(a) = oo. Now, it is known [4, p. 508] that the 
equation 

y ( - Pi)Y sgn[ -pi] = (-1)ni 
has a solution which satisfies (- l)n-y(l) > 0, i = 0, . .. , n - 1, on [a, om) if 

Po E 0 eventually. 
By Theorem 1 we may deduce that if p0(x) is not eventually zero, then D (a) 

is finite for every a, except perhaps when co = a, = . = ok = -ak+l 

= . = (-l)n-kon, for certain k, 0 < k < n, which (for 1 < k < n -1) is 
the case considered in [5]. Indeed, if for every b > a there exists a solution 
which satisfies (6) on [a, b], then an appropriate subsequence converges to a 
nontrivial solutiony such that aiy(') > 0, i = 0, ... , n - 1, on [a, oo). Sincey 
is monotone and y m 0, we have a0y > 0 on (a, oo). But po 5 0, therefore 
also y((n) = - E: py(i) m 0, and since y(i), i = 0, ... , n - 1, are monotone, y 
satisfies (6) on (c, oo), c > a. If there is i, 1 < i < n - 1, such that ai = ai+ 
i.e., aiy() > 0 and aiy('+1) > 0 then avy(i) is positive and increasing and so 
CY (i-l) + oo. Therefore ai-I = o,. So we must have a0 = . = ak = 

-_ k+1 = . = (- l)"-kan for a certain k, 0 < k S n, which is the case 
mentioned above. 

Our next aim is to study the solutions of (1) which are associated with D (a). 

THEOREM 3. There exists a solution Y of (1), associated with D (a), such that 

Y(')(a) = 0, aiai+ 1 > 0, 

YW(D((a)) = 0, ajoi,l < 0,i =, . . ., n-1 (14) 

and 

aoY > 0, 

'gi Y ) > O, a < x < t(a), i 0= O, . . ., n -1 (15) 

PROOF. We have seen in the proof of Theorem 1 that for every s, 
a < s < D (a), the boundary conditions 

y(')(a) = ai, ai i+ 1 > 0, 

y(M)(s) = a, 
aia+ I < 0, (16) 

define a unique solutiony, of (1) and that 
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We normalize the solutions {y,} through multiplying them by a positive 
constant K, so that '-'I KAy'()(a)I = 1. As s (a) -, we choose a 
subsequence of {Ksys} which converges to a nontrivial solution Y of (1). By 
(17), we have 

i y(i) > O, i = O, ..., n-l1, a < x < ? (a), (18) 

and by (16), IY(i)(a)l = m if aiHI4 > 0 and I Y(')((a))I = m if ai, I < 0, 
where m = lim Ks-' > 0. If m 0 0, then aiYY()(a) > 0, aiHI4 > 0 and 
ai Y(I)(Q(a)) > 0, aiai, 1 < 0. As in the proof of Theorem 2, these inequalities 
together with (18) imply that ai y(i) > 0, i = 0, . . . , n - 1, on [a, t(a)], which 
is impossible by Theorem 1. Therefore m = 0 (i.e., Ks -> oo) and Y satisfies 
(14). 

By (14), Y vanishes at one of the endpoints of [a, ' (a)]. If Y would have 
another zero in [a, D (a)], it would vanish identically on a whole interval, since 
by (18) it is monotone. This is impossible because Y is a nontrivial solution 
and so (15) is proved. 

REMARK. In contrary to (6), inequalities of type (15) do not imply absence 
of focal points on any interval, since if po 0, (1) always has the solution 
y =1. 

3. The extensive literature about boundary value functions suggests to ask 
when is D a continuous, increasing function. For example, see [1, Theorem 2] 
and [6, Theorem 4.1]. It is also interesting whether '(a) depends continuously 
on po, . . . , p,n- and decreases when Ipol, .. ., [ & - I I are enlarged. Indeed, it 
can be easily proved by using Theorems 1 and 2 alone that D is a nondecreas- 
ing function and '(a) does not grow then IpOl, . . . , Ipn-Ij are enlarged. 
However, if we only assume aipi(x) > 0, i = 0, . .. , n - 1, the following 
examples show that the focal point does not have necessarily more delicate 
properties. 

EXAMPLES. Let (x)- 0 for x < 0, (x) 1_ for x > 0. 
(i)y" + (1 - T(x) + T(x - l))y = 0,y(a) = y'(s) = 0. 
We have '(a) = a + 7T/2 < 0 for a < - v1/2, but t(a) > 1 for a > 

-7T/2. 
(ii)y" + a (l -T(x) + T(x - l))y = 0,y(a) = y'(s) = 0. 
Here, if a = 1 then D (- r/2) = O but for every a < , D (- r/2) > 1. 
(iii) Consider y" + p,(x)y' + po(x)y = 0, where pl(x) = -2, po(x) = 

2T(x). The corresponding boundary conditions are y'(a) = y(s) = 0 and the 
unique solution (up to a multiplicative constant) which satisfies y'(a) = 0 for 
a < 0 is y(x) 1 for x < 0, y(x) = ex(cos x - sin x) for x > 0. It follows 
that D (a) = 7T/4 for every a < 0. 

(iv) Let now p-l(x) = -1 - (x) < 0, 1O(x) = 2T(x) > 0. Then po > 

0, -Pi > -P1 > 0, Pi & Pi but y" + PI1y' + Po1y = 0 has the same solution 
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as in example (iii) for a < 0. Consequently D (a) = D (a). 
It turns out that the irregular behaviour of focal points, which was 

demonstrated above, will be eliminated if the inequalities in (15) are strict. 
Therefore next we check when does this happen. 

LEMMA 1. Let q, 1 S q < n - 1, be the least integer such that aqaq+j = 

aq+ laq+2 = -= ja"na. An equality occurs in (15) if and only if an an > 0 
andpo= =pq- IO on [a, c] or if on" jan < O andpo .* * * =Pq-i1 
O on [c, T(a)], for certain c. In this case 

i y(i > O, i= O, ... ., q -1, a < x < D (a), 
and 

on [a, c] or on [c, D (a)], respectively. 

PROOF. Let an equality hold in the ith inequality of (15). Suppose, for 
example that aiai,I > 0, i.e., Y(')(a) = 0 and let Y(')(c) = 0, a < c 6 ' (a). 
y(i) is monotone, so Y(') _ 0 on [a, c]. On the other hand, Y(i) m 0 on 
[a, ; (a)], since integration of y(i) -0 and application of (14) would imply 
that Y _ 0. Therefore a < c < D (a) and Y(i)( (a)) =# 0. 

Clearly, y(i+1) -0 on [a, c], Y(i+ 1)( (a)) # 0 and therefore a,ia+1 = 

oi+A 16+2* Consider now y('-'). If ai- jai = aiai+ I > 0 then Y(i-')(a) = 0 and 

y(i-l).jx Y ')(t)dt-0fora? x < c. And if ai-ai= -aiai+ <0, then 

Y -l)Q (a)) = 0 and Y(- 1)(x) 4 0 for a < x < t (a). For if Y(- ')(a) = 0, 
a 6 a < ' (a), then y('') 0 on [a, ' (a)] and this would contradict 
Y (')QT(a)) :4 0. 

Let q, 1 6 q 6 n -1, be the least integer such that UqGq+l = Oq+l1q+2 

= = an, -aon. The above discussion shows that y(i) -0 on [a, c] for 
i=q, ... ., n and Y(') :7 0 on (a, c] for i =0, . * * , q- 1- By (1), l-iqp yiY 

=0 on [a, c] and since p,Y(i) > 0, y o, i = 0, . . q -1, we have 
Po -=- - pq-I-Oon[a,c]. 

Conversely, if the above conditions are fulfilled, then u = y(q) satisfies, on 
[a, c], (nq) + '-lpiu(i-q) = 0, u(i)(a) = 0, i = 0, . .. , n - q - 1 and 
therefore y(q) = .. = y (n) -0 on [a, c]. 

In the remainder of the paper let a be a fixed point. In order to guarantee 
strict inequalities in (15) we assume 

ASSUMPTION I. Either a-,,an > 0 and 2q2-Ipi(x)I e 0 in a right neigh- 
borhood of a or an-l,n < 0 and 2qX-p,(x)/ 5 0 in a left neighborhood of '(a), 

where q is the least integer such that aqaq+ I = aq+ lIq+2 = * = anln 

Before proceeding the study of the focal points, we prove the following 
lemma, which emphasizes the importance of the solutions of (1) which satisfy 
C )( > 0. 
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LEMMA 2. Lety be a solution of (1) which satisfies 

ay ) > O, i = O,.. ., n-1, a < x < s, (19) 

and let y be any solution of 

n-I 

Y(n) + 2 A (x)y(i) = 0 (20) 
i=O 

where 

ajpj (x) > qaip(X) > O, i = O,. , n -1, a < x < s5 (21) 

If T satisfies at least those of the boundary conditions (4) which are satisfied by y 
(perhaps none), then there exists a positive X such that 

ai(y _ W)i > 0, i = 0, ... ., n , a -< x -< s5 (22) 

Note, that no assumptions are made about the sign of 5(')(x). 

PROOF. Since ay() > 0, (22) is equivalent to ly(i)l > X,7l(I). Roughly 
saying, this means that whenever y(L) vanishes, y)() tends to zero at least as 
quickly as y (i) does. For the first derivatives this is almost trivial. However, 
Po, . .. Pn-I may all vanish at the same point or vanish identically on the 
same interval and by y((n) =-:2piy(i), the behaviour of y(fl) near its zeros 
may be problematical. 

The only zeros which y, . . . , y (n) may have in [a, s] are the zeros which 
are specified in (4) or part of them. For, if aiai+I > 0 then a y() > 0 and 
giy (i+1)= a=i+y('+') > 0 on (a, s), i.e., a,yv() may have a zero only at a. But at 
this point also the corresponding derivative of yj vanishes according to our 
assumption. Assume for example that an l-n > 0 and let q be defined as in 
the statement of Assumption I. Then aq -aq < 0 and y(q- )(a) =# 0. 
Consequently the zeros of y, ... , y (q1-) at a are at least of the same 
multiplicities as those of y, . . , .jTq l). Since a, - jan > 0 and y(n- 1)(s) # 0, 
the same is true also at s. It follows that there exists X > 0 such that 
y(i)j > XIj)l ,i 0, ... , q -1, a < x < s. Since ay() > 0, we have 

Wy(Xaiy7', i= ,.. .,q-1, a < x < (23) 

At the points a and s, (22) holds trivially also for i = q, . . . , n - 1. For if 
y(i) vanishes there, then as we have already remarked, also 1(i) vanishes. And 
if y (i(a) # 0, i.e., avy(()(a) > 0, then (22) holds for that i and x = a if X is 
sufficiently small. 

In order to prove (22) on [a, s] for i = q, . . . , n we denote w = aq(y - 

Xy)(q). Recall that aqaq+ 1 .. = an_a n > O i.e., aq = aq+ * an 
- 1. Therefore by (21) and (23), 
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n-q-1 n-I n-I 
w(n-q) + n P+qW(i) - [Y() + 2 PiY()+ ] F(n) I 

i=O i=q i=q 
q-1 q-1 

= y pix(i) a A ftp7(i) > 0 
i=O i=O 

and w ")(a) = ai+q(y - Xy)i+q(a) > 0, i = 0, . n - q - 1, since (22) has 
already been proved for x = a. But 

n-q-1 

w(n-q) >s 2 (-Pi+q)W(i)~ ( Pi+q) > ?1 
i=O 

W(A)a) > 0, i =O,...n- q- 1, 

imply that w- - o +q(y -jT)(i+q)>, i = , ...,n-q, a S x S s, and 
the lemma is proved. 

The first application of Assumption I will be the following strengthening of 
Theorem 3. 

THEOREM 3'. There exists an essentially unique solution of (1) associated with 
' (a), which satisfies the boundary conditions (14). This solution satisfies 

oiY(i' >0O, a~oia0+I >, ax<x (a), (24) 

aY(i) > , qjqj+ I <O,. a x< x< (a). 

PROOF. By Assumption I, an equality in (15) is excluded and the solution Y 
which is defined in the proof of Theorem 3 satisfies (24). To prove the 
uniqueness, suppose that there exists another solution Y which satisfies the 
boundary conditions (14). Note that we do not assume anything about the 
signs of Y(x) . . .Y y )(x). 

Let 4 be the maximal value of X such that a,( Y - XY)(i) > 0, i = 0, . ., 
n - 1, a < x < '(a). Since Y and Y satisfy the conditions of Lemma 2 on 
[a, D (a)], we have 0 < Ko < K . Clearly 

ayi( Y - AoY ) > O, i = O, ...,&n - 1, a < x s ~(a), 

and Y - A, Y satisfies the boundary conditions (14). Therefore, if Y - XoY i 
0, then by Assumption I we have 

i(Y - Y) >O, i=O,... ,(n - l,a < x <i) 

But then we may apply Lemma 2 for the solutions Y - oY and Y on 
[a, (a)] and obtain XI > 0 such that 

j( Y - (Ao + XI) Y ) 
W 

> O, i = O,* ... , n - 1, a < x < 

in contrary of the maximality of Xo. This proves that Y _ kOY. 
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The following theorems are routine applications of Lemma 2. 

THEOREM 4. Let t (a) be the focal point which corresponds to the equation 

n-I 

y(n) + I Pi (x)y() = 0, api, > 0. (25) 
i=O 

If aipi(x) > ai,(x), i = 0.. .,n- 1, a < x < (a), then ,(a)> '(a). If 
Assumption I holds for (1), then D(a)= ;(a) if and only if (1) and (25) are 
identical on [a, D (a)]. 

PROOF. Let y be a solution of (1) which, according to Theorem 1, satisfies 
(6) on [a, b], b < t (a). Then yfl) + Y4iy(i) ? y(n) + py(i) - 0 on [a, b] 
and, by Theorem 2, ' (a) > b. Since this holds for every b, b < ' (a), it 
follows that D (a) > 2 (a). 

It is sufficient to prove the second part of the theorem only when (25) too 
satisfies Assumption I. For choose pi,, aqi,. < aifi < cipi, such that the inter- 
mediate equation is not identical with (1) but satisfies Assumption I. By the 
above argument, g (a) > f (a), and if we are able to prove that ' (a) > ' (a), 
then D (a) > D (a) follows. 

The remainder of the proof is similar to that of Theorem 3'. Suppose 
(a) = ? (a). Let Y be the solution of (1) which satisfies the boundary 

conditions (14) at a and at t (a) = f (a) and which satisfies inequalities (24) 
on [a, t (a)] = [a, f (a)], and let Y be the solution of (25) which satisfies (14) 
at the same points. Let A0 be the largest value of A such that a,( Y - XY)(i) > 
O, i =0, ...,n- 1, a S x < D (a)= '(a). Clearly, 

ai(Y- OY) > 0, i = O, ..., n-1, a < x (a), (26) 

a()Y - = Y py (i)) >J b4 - "i. (27) 

Y - A0 Y satisfies the boundary conditions (14) at a and at ' (a). As in the 
proof of Lemma 1 we obtain (by using the differential inequality (27) rather 
than a differential equation) that if Y - Ao Y i 0 and Assumption I holds for 
(25), then a,( Y - A0Y)(i) > 0, i = O, II. ., n - 1, a < x < g (a). But this leads 
to a contradiction as in the proof of the previous theorem. Therefore Y 
AoY and equations (1) and (27) are identical. 

COROLLARY. Let ;(a) be the focal point for the (n - r)th order equation 
(2 < n - r < n), 

y(n-r) + p 1y(n-ri 1) + +PrY 0. (28) 

Then f (a) > D (a) and the inequality is strict unless po -- * * Pr-I 0. 



198 URI ELIAS 

The boundary conditions which correspond to (28) are 

y(')(a) - 0, ai+rai+r+l > O, 

y(i)(S) =, O i+r(yi+r+l < ?, i = O .. n -r -1 
If 0r0r+ = ..= . a.a, the corollary is trivial since we have in fact initial 
value conditions and '(a) = oo. Otherwise, D (a) is identical with the focal 
point of y(n) + E-lpi(x)y(i) - 0 and the corollary follows by Theorem 4. 

THEOREM 5. D is strictly increasing on a right neighborhood of a. 

PROOF. First we show that D is always nondecreasing. By Theorem 1, for 
every b, a, < b < t (a,), there is a solution y of (1) such that ivy(i) > 0, 
i = O . . ., n-1, a, < x < b. For every a2, a, < a2 < (a,), y satisfies the 
same inequalities on the smaller interval [a2, b]; thus by Theorem 1, D (a2) > 
b. Since this holds for every b < ' (a,), D (a2) > D (a,) and D is nondecreasing. 

Recall now that Assumption I holds for [a, D (a)] and suppose D (a) = D (a-) 
for certain a, a < a < ; (a). Let Y be the solution associated with t (a) and 
which satisfies (24) on [a, D (a)] and let Y be a solution associated with (a-). 
Consider Y and Y on [ai, D (ad)]. Since a < d < D (a) = D (a-), we have 

ay(i) > 0, i = O ..., n-1, a < x < (a-) = (a) (29) 

while 

y (i)(j) = 0, a > 0, 

Y U)(; (a-)) = ,01 i = 
0,<a1 <0. (30) 

We shall show (29) and (30) are incompatible. Let Xo be the largest value of X 
such that ai(Y-Xy)(i) > 0, i = O, . . ., n, na x < ~(ai) = t (a). Since Y 
and Y satisfy the conditions of Lemma 2 on [a, D (a-)], we have Xo > 0 and 

e ( Y -A X >0, i=0,...,n,a-<x <()= (a). (31) 

If we show that 

a1(Y - XJ`) > 0, i = 0, ..., n - , < x < ()) = (a), (32) 

we shall obtain a contradiction as in the previous proofs, thus confirming that 
t(a) > (a-). 1(- 

If a__n > 0 then an-1(Y -oY)(-')(a-) = ayn_Y(I )(a) > 0 by (29) 
and (30) and an, -( Y - Xo Y)(") = a( Y - X Y)(") > 0 by (31). Consequently 
a"- i( Y - X0 y)(n 1) is a nondecreasing, positive function on [a, D (a-)] and (32) 
follows from (31). 

If a_l an < 0 then aq.10q > 0 and by a similar reasoning aq.(Y - 

Xo Y)(q-l) > 0 on [a, t (a)], which proves (32) for i = 0, . .. , q - 1. But 
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according to Assumption I, E:q -'Ip(x)I m 0 near ' (a) = (a-) (since a, - 1 
< 0) and therefore (Y - X Y)(n) - pi( Y - X=oY)0) a 0 near ' (a). Since 
y(n-')(D(a)) = y(n- ')(D (a)) = O, 

-y X OY)(n-x)= f;(a) 1(Y - =Y) g- dt > 0 

for a- < x < D (a) = D (ad) and (32) follows. As we have already remarked, this 
completes the proof. 

Example (iii) shows that D is not necessarily strictly increasing in a left 
neighborhood of a. 

Examples (i) and (ii) show that even if Assumption I holds for an interval 
[a, ' (a)], D is not necessarily continuous at a and ' (a) does not depend 
continuously on pop, . . , Pn- 1 This is not surprising, since the continuity of D 

depends on its behaviour in a whole neighborhood of a. This is the reason 
that in the next two theorems we modify our assumptions. 

THEOREM 6. D is always left-continuous. If an- an > 0 and Eq-IpiI m 0 in a 
right neighborhood of a or an- ia,n < 0 and X Ipi P 0 in a right neighborhood 
of t (a), then D is continuous at a. 

PROOF. D is a nondecreasing function; therefore the one sided limits 
(a - ), (a + ) exist. First we show that D (a -) = ?,(a). For every a < a, 

D (a) < so and there is a solution Ya which satisfies the boundary conditions 
(14) at a and at D (a). As a--a -, we normalize {Y,} and by taking an 
appropriate subsequence, we obtain a nontrivial solution of (1) which satisfies 
(4) for s = T (a -). Thus T (a) < t (a -). But since D does not decrease, 
t(a) = t(a -). 

Suppose that D (a - ) < s < D (a + ) < oo. For a > a, we cannot consider 
a solution Ya as above since ' (a) = x is possible. However, for every a > a, 

D (a) > D (a + ) > s; therefore we can proceed as in the proof of Theorem 3. 
The boundary conditions y(i)(a) = ai, oiai I > 0 and y()(s) = ai, aiai+I < 0 
define a solution Ya such that GiYai)> i> = 0, . . .,n - 1, a S x S(s. As 
a -- a +, we normalize {Ya} so that E IKY,ya(')(s) = 1 and choose a 
subsequence which converges to a nontrivial solution y. y satisfies a > 0, 
i = 0, . .. , n - 1 on [a, s], jy(i)(a)j = m, ?i?i+l > 0 and jy(I)(s)j = m, aoi+ I 
< 0 for certain m > 0. Since s > D (a - ) = D (a), we have, as in the proof of 
Theorem 3, m = .0, i.e., y satisfies boundary conditions (4). But we assumed 
that either an1a,, > 0 and Eq -Xpij I 0 on (a, a + e) or an-1an < 0 and 

pi 0 on ( (a), ,(a) + e). Therefore as in the proof of Lemma 1, 

oYiy W) > O, i 0, . . . , n -1, a < x < minfg(a) + -, s}. 

On the other hand, there is a solution 5- which satisfies (14) at a and at D (a). 
Now we prove that y and 

- 
are incompatible as we have done this for (29) 
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and (30). This contradiction proves that (a -) = (a +). 

THEOREM 7. Under the assumfption of Theorem 6, (a) depends continuously 
on pO ..., Pn-'. 

PROOF. Let D (a) be the focal point for (1) and let D (a) be the focal point for 

n-I 

y(f) + A p(x)y= 0, ai 0. (33) 
i=O 

Given E > 0, we shall prove that D (a) + e > D(a) > D (a) - c, provided that 

lpi(x)-fi-(x)l<8on[ (a),.;(a)+ 1],i=0,...,n- 1,6=6(c). 
According to Theorem 1, there exists a solutiony of (1) such that aGy) > 0, 

i = 0, . .. , n - 1, a < x < g(a) - e. By the continuous dependence of a 
solution of an initial value problem on the coefficients of the equation, also 
(33) has a solution which satisfies similar inequalities on [a, D(a) - E], pro- 
vided that lpi - P,il < 8 on [a, '(a)]. This proves that ,(a) > T(a) - e. 

In order to prove that t (a) + c > D (a), it is not sufficient to exchange the 
roles of (1) and (33) since the above 8 depends not only onpo,... pn -p but, 
what is worse, on y. Suppose on the contrary that there exists co > 0 and a 
sequence of equations y((n) + En- Ip,jy(i) = 0, j = 1, 2, ..., such that for 
i = 0, .. . , n - 1, pJ p, uniformly on [a, t (a) + 1] as j> oo and none of 
these equations has a focal point on [a, t (a) + Eo]. Now we continue the 
proof as that of Theorem 3. Denote s = D (a) + Eo and letyj be the solution of 
the jth equation which is defined as in (16). Since the jth equation has no 
focal point on [a, s] we have oyjv(i) > O, i = O,> , n - 1, a < x < s. We 
normalize {yi) so that E:'j KIyj(')(a)I = 1 and choose a subsequence { (Kyj} 
such that the sequence of vectors (Kj y(n(a), . . . , J>,yJ5- ')(a)) converges. By a 
standard theorem [2, p. 17], K)1yj, converge uniformly on [a, s] to a nontrivial 
solution of (1). Now the proof is completed as that of Theorem 6. 

4. The study of focal points in [5] is based on the existence of a minimal 
positive eigenvalue of (5). As an application we show how the above 
properties of the focal points can be used for a corresponding eigenvalue 
problem. 

THEOREM 8. If Eq- Ipi(x)I m 0 in [a, b], then theproblem 

n-I 

Y (n) + A E PiY( = 0, (34) 
i=O 

y(i)(a) = 0, aTaT+I > 0, 3 
y(i)(b) = 0, aiai+I < 0) 

has a least positive eigenvalue. 
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PROOF. For every positive X, we denote the focal point for equation (34) by 
D (a, X), D (a, X) < oo. We shall show that D (a, X) < b as X -oo and b < 
'(a, X) < oo as X ->0. According to example (ii) '(a, X) is not necessarily a 

continuous function of X and we do not have the intermediate value property. 
Nevertheless, we shall show that for a certain X = A0, a solution of (34) 
satisfies (35) even if T(a, A0) < b. 

For X = 0 we define a solution y of y(f) = 0 by setting y(ln) _ 1, 
y(i)(a) = ai for ajiaI+ > O andy(i)(b) = ai for aoiI < O, i = O, .. .,n-2.y 
is easily obtained by repeated integrations between the appropriate endpoints 
and aiy(i) > 0 on [a, b], i = 0, . .. , n - 1. By the continuous dependence of a 
solution of an initial value problem on the coefficients of the equation, we 
have for sufficiently small values of X a solution of (34) which satisfies similar 
inequalities. Consequently, ' (a, X) > b. 

To prove that ' (a, X) < b as X -> o, suppose on the contrary that b < 

'(a, X) < so for arbitrarily large values of X. By our assumption, there is r, 
0o r < q - 1, such that arpr(x) ) m > 0 on [a, ] c[a, b]. By Theorems 4 
and 5, the focal point ' for the equation 

y(n) + Xar my(r) 0 (36) 

which corresponds to the boundary conditions (4), satisfies '(a, X) > ,B and 
(36) has for every X a solution y such that aVy(j) > 0 on (a, /3). But this is 
impossible. For, ux(x) = y(r)(a + (Xm)l/(n-r)(x- a)) is a solution of U(n-r) 

+ Oru = 0 such that Gi+rU4') > 0, i = 0, . .. , n -r, on (a, a + (Am)l/(n-r)( 3 
- a)) and as X -> oo we obtain a nontrivial solution u such that ai+rU(i) > 0 
on (a, oo). But this equation may have solutions which do vanish on a half 
line only of the form e-x or ex(I + 0(1)), according to the sign of or and the 
parity of n - r. Either of these solutions corresponds to the case arar+ 

= = an_ -an, in contrary to the definition of r. 
Let Xo be the infimum of the values of X such that ' (a, X) < b. By the 

above considerations, 0 < Ao < oo. For X > Xo, ' (a, X) < b and there is a 
solution Yx of (34) which satisfies boundary conditions (4) at a and at ' (a, X). 
When X -- Xo +, we obtain a nontrivial solution of 

n-I 
y(n) + X0 I py(i) = 0 (37) 

i=O 

which satisfies the same boundary conditions at a and at ' (a, Xo + ); thus 
' (a, A0) < D (a, Xo + ). Since D (a, X) is a nonincreasing function of X, we 

have D (a, A0) = D (a, Xo + ). If D (a, X0) = b, Xo is the required eigenvalue. 
Suppose that D (a, A0) < b and recall that b < D (a, X) < so for X < Xo. 

Now we complete the proof as the proof of Theorem 3. The solution yA which 
is defined by y(i)(a) = ai, aiai+I > 0 and y(i)(b) = ai, aiai+I < 0, satisfies 

aiyxW > O, i = O, . .. , n - 1 on [a, b]. After suitable normalization, we choose 
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a subsequence which converges as X - O - to a nontrivial solution y of (37) 
such that a,y( >_ O, i = O, ..., n- 1, a x < b, Iy(')(a)I = m, aiai+I > 0 
and Iy('(b)l = m, a,,+ I < 0, for certain m > 0. It is seen that m =# 0 is 
impossible since T (a, A0) < b, therefore m = 0. Thus y satisfies (35) and Xo is 
the least positive eigenvalue. 

Note that in [5], an assumption similar to our Assumption I is used to 
prove the AO-positivity of the integral operator which corresponds to (5), 
though it is not explicitly stated. 

Finally, note that the condition 2q-YIp.(x)j 5 0 is necessary. If po 
--* * 0 --Pq- l then u = y(q) is a solution of q(n-) + - lpiu(l-q) - 0 
which satisfies the initial value conditions u = u= (n-q- 0 at a or at 
b. Thus y(q) 0 and it follows thaty _ O. 

If Assumption I holds for the interval [a, b], the eigenfunction y satisfies 
a9y(') > 0 on (a, b) and it is easy to see that '(a, k0) = b. If Assumption I 
holds also for every interval sufficiently close to [a, b], then the eigenvalue is 
a strictly decreasing function of the basic interval. Indeed, b = t(a, X) is a 
strictly decreasing, continuous function of X and the inverse function X(a, b) 
has similar properties as a function of b. The roles of a and b can be 
exchanged by the transformation x = - x, y(x) = y(x), p,i(x) = (- l)ipi(x). 
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