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ZEROS OF SOLUTIONS AND OF WRONSKIANS
FOR THE DIFFERENTIAL EQUATION L,y +p(x)y =0

URI ELIAS

ABSTRACT. The equation which is studied hereis L,y+p(x)y =0, a<x<b,
where L, is a disconjugate differential operator and p(x) is of a fixed sign.
We prove that certain solutions of the equation and corresponding odd-order
minors of the Wronskian have an equal number of zeros, and we apply this
property to oscillation problems.

1. INTRODUCTION

In a recent work [4], Etgen, Jones, and Taylor investigated ways of factoring
the differential equation

(1.1) L,y+px)y=0, a<x<b,

where p(x) is continuous and of one sign and L, is disconjugate, into a product
of lower order operators. Their investigation was based on relations between the
nonvanishing of certain minors of the Wronskian and disconjugacy properties
of equation (1.1). In this paper we extend the results of [4] and study, more
generally, how many zeros certain minors of the Wronskian have. We shall
show that certain odd order minors of the Wronskian and related solutions of
(1.1) have the same number of zeros. This property will be interpreted in terms
of the oscillation theory of (1.1).
Let the disconjugate differential operator L, be

Lny = pn(pn—l "'(pl(poy)l)/ : ")I >

with weight functions p, >0, p,e€ C"™', i=0,...,n. Wedenote L,y = pyy
and L)y = pi(L,._ly)' ,i=1,...,n,andcall Lyy,...,L,y the quasideriva-
tivesof y.

Our results will be formulated in terms of a special basis {u(x), ..., #,_;(X)}
of the solution space of (1.1), which has been used in [1-5]. Since u#,(x), ...,
u,_,(x) will be defined in the next section by boundary value problems (2. 2)

n—
(2. 2) .1 » We first mention a known property [7] of boundary value problems of
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equation (1.1): If k quasiderivatives of a solution y vanish at the endpoint a
and n —k quasiderivatives of y vanish at b, a < b, then n — k must be odd
if p(x) > 0 and even if p(x) < 0. Therefore we shall say that an integer k,
0 < k < n, is of admissible parity if

(1.2) (-1)"*p(x) <0.

In [4], the authors studied the nonvanishing of certain minors of odd order
of the Wronskian. Theorems 7, 8 and 13, 14 of [4] motivate our work. For
example,

Theorem [4, Theorems 13, 14]. Let [ < k be of admissible parity and Up_yseees
Up_y» Uy_, elements of the basis which is defined by (2.2). If equation (1.1) is
(k, n — k)-disconjugate on [a, b], then

W(u[_19~~'auk_29uk_l)§£o, a<x<b.

Conversely, if (1.1) is not (k, n — k)-disconjugate on [a, b] and b is not a
(k, n—k)-type conjugate point of x = a, then Wu_y ooy Up_y, ty_,) must
have a zero on (a, b).

Our aim is to generalize this result:

Theorem 1.1. Let | < k, q be of admissible parity. If q > k then for arbi-
trary constants o, B, not both zero, the solution au, , + Bu, and the minor
Wy _ysones Uy au, |+ pu,) have an equal number of zeros, all of them
simple, in (a, b). If ¢ <1—2, then the numbers of the above-mentioned zeros
differ at most by 1.

Theorem 1.1 has a simple interpretation in view of the results of [2]. In [2]
we proved that for every solution y of (1.1), the function

z=W(u_,,..., U5 Y)
is a solution of an equation
(1.3) M,z +p(x)z=0, a<x<b,
where M,z = g,(d,_,---(0,(6,2)")'---)", 6,,..., 0, depend only on u,_,,
oo Up_,,and

0'0...a'n =p0...pn’

We called {u;_,, ..., u,_,} a pivotal block and equation (1.3) the equation
associated with equation (1.1) and this pivotal block. Let us denote

=Wy, Uy, 4;), ig{l-1,...,k-2}.
In these terms Theorem 1.1 may be stated as follows:
Theorem 1.2. For arbitrary constants o, B the solution ou -1t ﬂuq of (1.1)
and the solution az, |+ qu =Wu_ys. ooy Uy_y, au, |+ Buq) of the asso-
ciated equation (1.3) have an equal number of zeros in (a, b) if ¢ > k, and the
number of these zeros differ at most by 1 if g <1-2.
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2. DEFINITIONS

Before we begin the actual proof, we list some definitions and results from
[1,2]. Let S(c,...,c,) denote the number of sign changes in the sequence
Cy»---» ¢, of nonzero numbers. For a solution y of (1.1) we define

SO, x") = im S(Loy@, =Ly, ... (C1'Ly@)),

Sy, x )= lim S(Lyy(), Ly@), ..., L,y(S)).

E—x

The quantities S(v, x*), S(y, x) are closely related to boundary value prob-
lems of (1.1). For example, if y has a zero of multiplicity ¢ at x,, then
obviously

Sw,x)=4q, S¥.x5)>4q.
We summarize some of their useful properties:
Proposition 2.1 [1]. (a) Let x|, ..., X, be the zeros of the quasiderivatives Ly ,
s L,y in (a,b),let n(x,) bethe multiplicity of the zero at x;, and let (q)
be the greatest even integer not exceeding q. Then
(2.1) Sy,a" )+ Y, (a(x)+Sp,b7)<n.

a<x,<b
(b) Sy, x*) is an integer valued, nondecreasing function of x .
(c) S, x") and n—S(y, x™) are integers of admissible parities.

Now we define a basis for the solution space of (1.1) by means of n» boundary
value problems. For every admissible k we define u,_,(x) as the unique
solution of (1.1) which satisfies the system of boundary value conditions

Lu(a)=0, t=0,...,k-2,k,
(2.2),_4 L,_ u(a)=1,

L,u(b)=0, t=0,...,n—-k-2,
and u,(x) as the unique solution which satisfies

Lu(a)=0, t=0,...,k-1,
(2.2), Liu(a)=1,

Lu(by=0, t=0,....,n—-k-2.
Here and throughout the paper the following convention will be used: Whenever
an admissible k and solutions u,_,, u, are mentioned, omit u_, (if k =0)
or u, (if k =n) which are not defined at all.

It is proved in [1,4] that the set {u,, ..., u,_,} which is defined in this way,
exists, it is unique, and it is a basis of solutions of (1.1). This basis had been
used extensively in [1-5].

Let the Wronskian be

W(uO, cee sy un_l) = det(Liuj i,j=0,..,n—1
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and let its minors be denoted by

U youey U
w ( J’i j’r) = det(LjSui,(x))s,hl,m’,.
yoees dy
The properties of the basis %, ..., u,_, which will be needed are the following:
Proposition 2.2 [1, 4]. Let u, ..., u,_, be the basis of solutions as defined by

(2.2)0-(2.2),_, . If r £ q are of admissible parities, then for arbitrary constants
CrgsenesCy

(2.3) r<S(e,_ u,_ +--+cu,,x)<q onla,b),
U150 U . _ _
(2.4) W<i,..f,i+q—rq+1>¢0’ i=0,...,n—q+r-2, on(a,b)

(recall the convention about u_,, u,!).
Most frequently we shall use that for admissible / < k,

(2.5) Wty oo s Uy ) # 0, a<x<b.
The results of [2] about the associated equation are the following:

Proposition 2.3 [2]. Let [ < k be two integers of admissible parity. For every
solution y of (1.1), the function

z=W(u_\, .., Uy, ¥)
is a solution of the differential equation
(2.6) M,z +p(x)z=0, a<x<b,
where Myz = 0,2z, M,z =0,(M,_z)', 6,>0 on (a,b), i=0,...,n, and
0y(X), ..., 0,(x) depend only on u,_,, ..., u, and satisfy
Gy G, = Py Py
If r < q are of admissible parity such that {{ -1, ... ,k}, {r—1,...,q} are

disjoint, then the solutions

zj=W(u,_1,...,uk,uj), j=r—-1,...,q,

of (2.6) satisfy for arbitrary constants c,_,, ..., ¢,

(2.7) rSSM(cr_lz,_l+--~+cqzq,x+)§q onla,b),

(2.8)

W, P10 %y #0 i=0 n—q+r-2, on(a,b)
M\, ...,i+tg—-r+1 ’ Pt ’ S

(Here and elsewhere the subscripts M, L will remind us that the quasiderivatives
in question are Mz, L.u respectively.)

It should be emphasized that (2.6) is singular at x = a and x = b. The
quasiderivatives M,z are given by
(2.9)

_ u[_]:“[,’”,uk,y u[_l,...,uk
M"Z_W<i,i+1,...,i+k—l+2>/W<i+1,...,i+k—l+2)’
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where i=0,...,n—k+1-3 and a<x<b. When i+k—-1+2>n, the
explicit expression for M,z is slightly different (see [2]). Since we do not need
it here, it is omitted.

3. PROOF OF THEOREM 1.1 FOR ¢ =k
The proof of Theorem 1.1 is divided into several short propositions.
Proposition 3.1. auq_l+ﬂuq and az, +Bz, have no multiple zeros in (a, b).
Indeed, if we take r = g in (2.3) and (2.6), we get
(3.1) SL(auq_l + ﬂuq , x+) = SM(an—l + qu , x+) =q, a<x<b.
Consequently,
S(auq_1 + ,Buq, a+) =q,

S(au,_, + Bu,, b )= S(au, , + Bu,, (b—¢))
=n—S(au,_,+Bu,, (b—e)=n—gq

and, by (2.1), the solution au -1t Bu 4 of (1.1) may have no multiple zeros in
(a, b). The same argument shows that the solution az, ,+ Bz, of (1.3)also
has no multiple zeros in (a, b). O

From here on we separate the cases ¢ = k and g # k. In this section we
prove the theorem for ¢ = k£ only, while the case g > k will be discussed in
the following section. The reason for this separation will be clarified soon.

Let x, be a zero of az,_, + fz,, thatis

Wy Uy_y, oty + Buy)(x,) =0.

Then there exists a combination ¢;_,u;_, +- -+ ¢, _,Uy_, + ¢, (au,_, + Bu,)
which has a zero of multiplicity kK —/+ 1 at x,. Now, for every s € (a, b),

we take a combination of u,_,,..., u,_,, au,_, + Bu, which hasat x =
a zero of multiplicity at least kK — /. Such a combination obviously exists and
as W(u,_y,...,u,_,)(s)#0 forall a<s<b,the combination is essentially
unique and may be written, up to a constant

(3.2)

u_((x), ..o, u_,(x), auy,_; + Bu,(x)
Lou;_((8), ..., Lyup_5(s), Ly(auy_ + Buy)(s)
u(x,s)= . .
L,_,_u_(s), ..., L,_;_(au,_, + Buy)(s)

More explicitly,
(3.3) u(x, s)=c¢_ (S)u_y + -+ (5 + ¢ (S)(auy _, + Buy)

and
Co () =W (uy_y, ..., up_y)(s)#0.
By (2.3), u(x, s) satisfies S(u,a")>1, S(u,b )>n—k. At x =5, u(x, s)
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has a zero of multiplicity k—/ and k-1 is even, therefore S(u, a*)+ (n(s)) +
S(u,b”)>1+(k—-1)+(n—k)=n. It follows by (2.1) that u(x, s) and its
quasiderivatives have no multiple zeros in (a, s)U (s, b). (If au,_, + Bu, is
replaced in (3.2) by ou -1t Bu g0 4> k , the last conclusion is definitely false.
This is why we separate the cases ¢ = k and g > k). By the same reason it
follows also from (2.1) that the multiplicity of the zero at x = s can be either
k-1 or k—1+1 but not more. Now,

Ly ju(X, )| g =W (y_ys ooy Uy, g + Buy)(s).

Therefore, the multiplicity of the zero of u(x,s) at s is exactly k —/+ 1 if
and only if s is a (simple) zero of az,_, + Bz, . For every other s € (a, b),
u(x, s) has at x = s a zero of exact multiplicity k — /. This characterization
will be used to count the zeros of az,_, + Bz, by tracing the zeros of u(x, s).
More exactly, in the next propositions the following will be proved: u(x, s)
has for s — a* as many simple zeros in (s, b) as au,_, + fu, hasin (a,b);
as s increases, zeros of u(x,s) leave (s, b) one by one whenever s crosses a
zero of az,_,+ Bz, ; when s — b~ , u(x,s) has no zeros in (s, b).

Proposition 3.2. One simple zero of u(x, s) passes from (s, b) to (a,s) when
and only when s crosses a zero of az,_, + Bz, in (a,b) from left to right.
This is the only way by which the number of the zeros of u(x, s) in (s, b) may
change as s varies in (a, b).

Let (@zp_; + Bz;)(sy) = 0. Then u(x, s;) has at x = s, a zero of exact
multiplicity kK —/+ 1, while for s close to sy, s #s,, u(x,s) hasat x =5 a
zero of exact multiplicity k—/. By continuity arguments, when s is sufficiently
close to s,, u(x, s) has a unique simple zero, {(s), near Sy > such that {(s;) =
5y,. By the same arguments L, ,u(x, s) has also a unique, simple zero, say
{(s), near sy, and Z(so) = 5,. If we apply Rolle’s theorem successively to
Ly(x,s),...,L,_,(x,s), we see that {(s) has to be located between ¢(s)
and s.

We want to show that {(s) < s when s > s, and {(s) > s when 5 <s,.
Since {(s) is between {(s) and s, it suffices to show that s — {(s) increases
near s,. Recall that C(s) is the simple zero of L,_,u(x,s) which satisfies
{(sy) = s, - By the implicit function theorem

%—E— =— g—st_,u(x, s)/ %Lk_,u(x , S)
So

It follows from (3.2) that (8/9s)L,_,(x, s)|,_, = 0. The denominator

X=5=5,

0 -1
5 L1100 ) smsmsy = Prcmr41(80) L1140 > o)
is not zero, otherwise u(x, s,) would have at x = s, a zero of multiplicity

k — [ + 2, which we already saw to be impossible. Therefore f’(so) =0,
(d/ds)(s — {(s))(s,) = 1, and the first part of the proposition is proved.
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The number of the zeros of u(x,s) in (s, b)) may change when s varies
in (a, b) only as described above. Indeed, two zeros cannot merge at a point
of (s, b) since u(x,s) has no multiple zeros in (s, b). Neither can a zero
of u(x,s) tend to b as s varies in (a, b). To show this, observe that by the
boundary conditions (2.2), u(x, s) satisfies

Lu(b)=0, t=0,...,.n—-k-2,
L,y u(b) =c,_($)(aL,_j_Uy_y + BL,_;_ ;) (D),
L,_,u(b)=c,_,(s)(aL,_jtu,_, + BL,_,u,)(b),

and ¢, _,(s) # 0 for a < s < b. Thus, the multiplicity of the zero of u(x, s)
at b (which is either n—k — 1 or n—k) is equal to that of au,_, + fu, and
therefore is independent of s. Consequently, no additional zero of u(x, s)
meets b as s variesin (a, b). O

Next we have to discuss the situation as s — a* and s = b~ .

Proposition 3.3. When s is sufficiently close to a, u(x, s) hasin (s, b) exactly
as many zeros as ou,_, + pu, has in (a, b) for all but possibly two values of
a/B. When s is sufficiently close to b, u(x, s) has no zeros in (s, b) for all
but possibly one value of a/f .

When s = a or s = b, the determinant (3.2) is identically zero (unless
[ =0, 1). Therefore we normalize u(x, s) and define

k—1

a(x, ) =[c,_ (uy_y + -+ €y (De_y + € ()t + Bu)1/ Y ley(s)].
-1

By the normalization, each sequence s, — a* has a subsequence s; such that
J

u(x, s; ) converges uniformly to a nontrivial solution. u(x, s) hasat x =a, s,

J

and b zeros of multiplicities at least / —1, k—/, and n—k — 1, respectively,

and #(x,s) has the same ones. Hence, lim_, . #(x,s) (or the limit of a

subsequence) has at least (/ —1)+(k—/) =k —1 zeros at x = a. On the other

side, the limit solution is spanned by u,_,, ..., #,_,, au;_, + Bu, , so it may

have a zero of multiplicity kK — 1 at a if and only if, up to a constant factor,

lim @(x, s) = au,_, + Bu, .

s—a’

In order to prove that for s sufficiently close to a, u(x,s) and au,_, + Bu,
have an equal number of zeros in (s, b), it suffices to show that no zero of
u(x, s), except s, tends to the endpoints @ or b when s — a*. This is
definitely the case if

(3.4) a/B #0, a/B# =L,y (D)/Ly_j_ i (b).
For (3.4) ensures that

(3.5) L,_,(au,_, + Bu,)(a) #0, L, _(au,_, + Bu,)(b)#0
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and au,_, +fu, hasexactly k—1 zerosat a and exactly n—k—1 zerosat b.
If u(x,s) would have for every s a zero near a (or near b), in addition to its
zeros at a, s, and b, then the limit solution lim_, .#&(x,s)=au,_, + Bu,
would have more zeros at a (or at b) than is possible by (3.5). Thus, assuming
(3.4), the first part of Proposition 3.3 is verified.
Now consider s — 5™ . By a similar argument, lim_,- #(x, s) has at least

[ —1 zeros at a and at least (k—/)+(n—k—1)=n—-1[—1 zeros at b. Hence
we must have

lir?_ u(x,s)=ryu_, +du,.

s—
In order to prove that for s closeto b, u(x,s) hasnozeroin (s, b), it suffices
to show that no zero of u(x, s) tendsto b when s — b~ . This happens when

(3.6) L, (yu,_, +6u)(b) #0.

For, if u(x,s) would have a zero near b, when s — b, in addition to the
zeros at s and at b, then lim_,,- #(x, s) = yu,_, +Ju; would have more than
n—1—1 zeros at b, in contradiction with (3.6).

When is (3.6) satisfied? By (3.2),

ux, s) =Wy, up s s Up_y, atty_ + Buy )(S)u,_,(x)
T WUy Uy e s Ug_ys atlyy + Bug ) (S)uy(x) 4+ .
So
. W, .o, Uy_y, auy_, + Buy)
?/0 = lim 7
s—b (u[_l H u[+1 LI auk_l + ﬂuk)(s)

and y/d is a bilinear function of a/f . Therefore (3.6) holds for all but a single
value of a/f:

(3.7) o/ B # o/ By

This completes the proof of Proposition 3.3. O

We can summarize the situation as follows: For all values of a/f except the
three which are specified in (3.4) and (3.7), u(x, s) has for s — a* as many
simple zeros in (s, b) as au,_, + fu, hasin (a, b); as s increases, zeros of
u(x, s) leave (s, b) one by one whenever s crosses a zero of az,_, + fz,;
and when s — b, u(x, s) hasno zerosin (s, b). Consequently, az,_,+fz,
and au,_, + fu, have equal number of (simple) zeros in (a, b).

To complete the proof of our theorem in the case g = k it remains only to
remove the restrictions (3.4), (3.7). Let a,/B, be one of the three exceptional
values of o/f, say o,/B, = —L,_,_u_,(b)/L,_,_,u,(b). Assuming B, #
0 9

o+ Pu = B/B(ayup_ + Buy) + Bla/B —ay/B)uy_, .

For a/B # a,/B,, a/B close to a,/B,, L,_,_ (au,_, + Bu,)(b) # 0 and
au,_, + pu, hasat x = b azero of exact multiplicity n —k — 1. On the other
hand L, ,_,(ou,_, + B,u,)(b) =0 and oju,_, + B,u, hasat x =b a zero
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of exact multiplicity n — k, for a zero of bigger multiplicity would contradict
(2.3). Therefore,

au,_, + Bu, = B/B,(x — b)"*[4 + O(1)]

+B(a/B —a,/B)(x - b)" B+ o(1)],

where 4, B # 0. It follows that for o/f close to a,/f,, au,_, + Bu, has
a simple zero close to » and when o/f crosses «,/f,, the simple zero of
au,_, + Bu, passes from one side of b to the other. The direction of this
passage depends, of course, on the signs of the constants in (3.8).

Now, when a/B # a,/B, , it had been already proved that au, _, + fu, and
az,_, + Bz, have the same number of zeros in (a, b). Therefore, when a
zero of au,_, + pu, passes through b during the change of «/f, a zero of
az,_, + Bz, has to do the same. It follows that the number of the zeros of
au,_, + pu, and az,_, + Bz, is equal also for a/f = a,/f, . This completes
the proof of Theorem 1.1 for g = k.

(3.8)

4., PROOF OF THEOREM 1.1 FOR g # k
Recall the notation

(4.1) zj=W(u,_1,...,uk_2,uj), jef{l—-1,...,k-2},

(4.2) Toaz, Bz, =Wy, uyy, ou,  + Buy).
Theorem 1.1 for g > k will follow from the following
Proposition 4.1. The functions oz, |+ Bz, and

Wy (ze_ysonns Z,_ g 0z, |+ ﬂzq)
have an equal number of zeros, all simple, in (a, b).

Suppose momentarily that Proposition 4.1 had been proved. By the discrete
Wronskian identity [6, p. 61] applied to (4.1) and (4.2) we get

Wy(Ze_ys e Z, 5, 0Z, +qu)
=W (Ui s Upgs Up g5 e Ug_ps 0l +ﬂuq)
u u u ey U
xw, [(Y-1> M2 [—12 s Up_p )
L< 1,..., k-1 L\g-k,...,q-1+1
Since
w M- Y2 #0 1in(a,b)
i,oo.,i+k-1+1 >
it follows from Proposition 4.1 that azq_l+,qu and W(u,_,,..., Uy_p> Uy
+ Bu,) have an equal number of zeros in (a, b). However, the last minor
is exactly the one which is obtained when one chooses {u;,_,,...,u,_,} as

the pivotal block and so we encounter the situation which had been studied
in the previous section! It follows by the result of the previous section that
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Wu_ys...,u,_5,au, +pu,) hasin (a, b) as many zeros as au,_, + pu,
has, all of them simple. So Proposition 4.1 implies Theorem 1.1.

Thus, we have only to prove Proposition 4.1. Now, Proposition 4.1 re-
minds us of Theorem 1.1 with ¢ = k, when the solutions u,_,, ..., 4,_,,
au,_,+pu, of (1.1) are replaced by the solutions z,_,, ..., Z, 2> azq_1+ﬂzq
of (2.5). However, there is an essential difference: while »,_, ..., u, are de-
fined as solutions of boundary value problems, z,_,, ..., z, are defined by
determinants. Nevertheless, Proposition 4.1 will be verified by repeating most
of the arguments of the previous section literally. Difficulties arise only when
we consider zeros of solutions z. near the endpoints a and b. Since a and b
are singular points for equation (2.6), the multiplicity of the zero of a function
M,z is not necessarily equal to the number of quasiderivatives Mz, M, ,z, ...
which vanish there; and when zeros approach x = a or b, we cannot simply
sum up the number of vanishing quasiderivatives without a careful examina-
tion. Therefore we begin with a result about boundary values of minors at a
and b.

Lemma [2, Lemma 3.1]. If | < k are of admissible parity, 0 < oy_; < -+ <
oy < n—1, then the function

W(u,_l,...,uk)

- al_l’-oo,ak

has exactly Ef_l(i—ai)Jr zeros at x = a and exactly Ef_l(n—k+l+i—ai)+
zerosat x=b.If r>k and ay <a,<n-1, then

W(u,_l,...,uk,ur)
Qp_ys ey Oy, Q

has at least Zf_l(z‘ —a;),+(r—a,), zerosat x =a and at least (n—#—1-
a )+ Y (n—k+1+i-a), +(n—1-1-aq,), zerosat x=Db, where }
equals r or r+ 1 according to whether or not r is of admissible parity.

After this preparation we turn to the series of arguments which will lead to

the proof of Proposition 4.1. In (3.2) we replace u;_,, ..., Uy_,, auy_; + Bu,
by z,_;,..., Z,_ys @Z, +qu and define
Ze ()5 oy 2, 5(%), az, |+ Bz,(x)
Myz,_((s), ... Myz, ,(s), My(az, |+ Bz,)(s)
Z(x > S) = . .
Mq_k_lzk_l(s), e Mq_k_l(azq_l+ﬂzq)(s)

=d_((zp_ + o+ d, ()2, 5 +d,_(8) ez, + Bz,).
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Here dq_l(s) =Wy (Zp_ys--- s zq__z)(s) and by the discrete Wronskian identity
dq_l(s) = WUy ey Up s Up_ysones uq_z)(s)
ul_l,...,uk_z L ul_l,-.-,u
XWL( 1. k=1 ) WL(q—k—I,...,q >(s)*°
a<s<b.

Proposition 4.2. One simple zero of z(x, s) passes from (s, b) to (a,s) when
and only when s crosses a zero of Wy, (z,_,, ..., Z, 5, QZ, +ﬂzq) Sfrom left
to right. This is the only way by which the number of the zeros of z(x,s) in
(s, b) may change as s varies in (a, b).

The proof is parallel to that of Proposition 3.2. In order to show that no zero
of z(x,s) tends to b as s varies, we need the boundary values of z(x, s) at
x = b. This may be done as follows: By the Lemma, if i +k -/ < n, the
function

_ u,l,.. Uy_y, U, Up_yseees Uy s
Mz, W( L itke l)/W(i+l,...,i+k—l>’

has at x = b a zero of multiplicity at least
[(n—F—1=i) +(n—k+1-i-1) (k=D)]-[(n—k+1-i-1) (k=D)] = (n—F-1-i), .
This implies, by the way, thatthe M,z,, i =0, ..., n—k+/-1, are continuous

at x = b in spite of the singularity of equation (2.5) at x =b. Now z(x, s) =
dy_yzp_+-+d,_yz, ,d, (az,_ ,+ Bz,) satisfies

M,z(b) =0 i=0,...,n—q-2,
M,_ q 2(b) = q__l(s)(aM g 1zq_l +BM,_,_, q)(b)
_2b)=d,_\(s)aM,_ z,_, +BM,_,z,)(b).

Since d,_,(s) # O for a < s < b, the vanishing (or nonvanishing) of the
functxons M 12> M, .,z at b is independent of s. On the other hand,
M, ,_z(x, s) M, qz(x s) are continuous near x = b for a <s < b and
if a zero of z(x, 5) would tend to b as s varies, an additional quasiderivative
would vanish at x = b, in contradiction to the previous remark. Consequently,

no zero of z(x,s) may tend to b when s variesin (a, d). O
Proposition 4.3. When s is sufficiently close to a, z(x, s) hasin (s, b) exactly
as many zeros as oz, ,+ Bz, hasin (a, b). When s is sufficiently close to b,
z(x, s) has no zeros in (s, b).
We normalize z(x, s) and define
g—1
2(x, 8) = de_ )z +- - +d,_(8)z,_,+d,_ (Naz,_,+Bz)l/ D_1d,(s5)]-
k-1

By the normalization, Z(x, s) (or a subsequence) converges uniformly on any
compact interval to a nontrivial solution. In order to understand what happens
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when s — a*, we need to know about the behavior of

_ Up_ s ooy Up_ygs U, Up_ys oo s Upy
Mz, W( iy ithk—1 )/W<i+1,...,i+k—l>
near x = a. If i+k—/ < n, then, by the Lemma, M,z, hasat x = a a zero of
multiplicity at least [(/=1-i) (k=D +(r—i—k+1), ]-[(I-1-i=1) (k-1])].
If i <1-2, the multiplicity of the zero of M,z, at x = a is at least r — |
and if /-1 < i< n-—k+1, the multiplicity is at least [r — (i + k — )], .
Anyway, M;z, is continuous near x = a at least for i =0,..., n—k +1.
(Note the difference between the multiplicity of the zero of M,_,z, and that
of M,_,z, = a,_l(M,_zzr)'. This is due to the singularity of o,_, at a). For
i =r—k+1 we expand the numerator of M, , ,z (a) according to its last
column and get
Up_ s oees Up_py U _ Up_ s oo s Uy,

Wt Y @=w (e e @@ 2o,
Therefore
Mz (a)=0, i=0,...,r—k+1-1,

Mr—k+lzr(a) # 0.

Since Z(x,s) is a combination of z, ,,..., z ,

Myz(a)=0, i=0,...,1-2.

Now z(x,s) also has g — k zeros at x = s, therefore by Rolle’s theorem
each of the functions M, z(x,s), ..., M, ,_x_,2(x,s) has one or more
zeros in (a,s). As z(x,s) (or a subsequence) converges uniformly when
s — a*, the limit solution and its quasiderivatives of orders 0, ..., q — k +
[ -2 vanish at a. On the other hand, lim _, . z(x,s) is a combination of
Zy_ys e Zy_gs 0z, + Bz, , 50 by (4.3) it may have ¢ —k +/—1 vanishing
quasiderivatives at x = a if and only if, up to a constant factor,

(4.3)

lim z(x, s) = az, +Bz,.

s—at
In order to prove that for s sufficiently close to a, z(x,s) and az, |+ Bz g
have an equal number of zeros in (s, b), it suffices to show that no zero of
z(x,s), except s, tends to the endpoints ¢ or b when s — a’. This is
definitely the case if

(4.4) a/B#0,  aff#-M,_,_z,_\(D)/M,_,_z,(b).
For (4.4) ensures that

(4.5) M, (az,_ +Bz)@)#0, M, _ (az,_, +Bz,)(b)#0.

But if z(x,s) would have an additional zero near a (or near b) for every s,
then the limit solution lim__ . Z(x, s) = az -1t Bz g would violate (4.5).

Thus, we have proved the first half of Proposition 4.3. The other half, con-
cerning s — b~ , is proved by a similar modification of the corresponding part
of the proof of Proposition 3.3 and it will be omitted.
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The singular values of «/f are treated as in §3. This completes the proof of
Theorems 1.1 and 1.2 for every ¢ > k. O

For the case q <! —2, Theorem 1.1 is proved by similar arguments. Propo-
sition 3.3, for example, will be replaced by the following: When s is sufficiently
close to b, u(x,s) hasin (a,s) exactly as many zeros as au,_,+ fu,_, has
in (a,b). When s is sufficiently close to a, u(x,s) may have in (a,s) at
most one zero.

In the analogue of Proposition 4.1, the zeros of az -1t Bz p will be compared
with those of WM(an—l + qu, Zoprs e z,_,) . The differences between the
cases ¢ > k and g <[ -2 are due to the asymmetry between the boundary
conditions (2.2) at x =a and at x =b.

5. SOME APPLICATIONS

The number of zeros of au —1t Bu p is closely related to oscillatory properties
of equation (1.1). Recall that the (g, n — g)-type conjugate point of x = a is
the smallest value of ¢, ¢ > a, such that the boundary value problem

Ly(@)=0, i=0,...,k—1,

Ljy(c)=0, j=0,...,n—-k-1,

(5.1)

has a nontrivial solution. More generally, the ith (k, n — k)-type conjugate
point of a, i > 1, is the ith value of ¢ in (a, oo) such that (5.1) has a
nontrivial solution. It is known that the number of zeros of u g in (a, b) is
equal to the number of (g, n — g)-type conjugate points of x = a which are in
(a, b). Hence,

Corollary. The number of the zeros of z,=W(u_y,...,u,u,) in (a, b) is
equal to the number of the (q, n—q)-type conjugate points of a for equation (1.1)
which are in (a, b). For every other combination ou, , + Bu,, the number of
zeros of W(u;_y, ..., Uy, au, +ﬂuq) may differ from the number mentioned
above by at most 1.

Indeed, for two independent solutions ou, ; + ﬂuq and YU,y + 5uq,
Wilau,_,+Bu,, yu,_ +éu,) = (ad—By)W(u,_,,u,)#0 on (a, b), so their
zeros separate each other in (a, b) and their number may differ by at most 1.
Hence, the same holds for the number of zeros of the minors W(u,_,, ..., 4,
uq) and W(u,_,...,u,, au, |+ ,Buq).

Up to now, we have discussed equation (1.1) only on a finite interval (a, b).
Let us consider it now on (a, oo). First we point out the dependence of the
solutions u; of (2.2);, i=0,...,n—1,0n b and denote them from now on
by u,(x, b). Next, we let b — oo and define

N def

i(x) =

) lim u,(x, b),

— 00

when b — oo along a suitable sequence of values. {i(x), ..., #,_,(x)} which
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are defined so, are a basis [1], and they satisfy Proposition 2.2 [2, 4]. In partic-
ular,
S(aﬂq_l+ﬂﬁq,x)sq, a<x<oo,

and all zeros of ail, |+ ,Bﬂq on (a, oo) are simple. Moreover, #,, ..., #,_,
also satisfy Proposition 2.3 for b = co [3, Theorem 2.5].

Recall that by Proposition 2.1, S(y, x*) is an integer valued, nondecreasing
function of x and the values of S(y, x*) are integers of admissible parities.
Accordingly, we defined S, in [1] as the set of solutions of (1.1) on (a, oo)
such that S(y, x™) = k on some ray (X, 00). The partition of the solution
space into the sets S, for admissible values of k is discussed in [, 5]. One
property of S, that we are going to use here is that the elements of S, are
either all oscillatory or all nonoscillatory solutions of (1.1).

Now we consider the sets S for equations (1.1) and (2.6) and denote them
by Sq(L) and Sq(M ), respectively. By inequalities (2.3) and (2.7) applied to
(a, 0o0), we get that

afl,_, + pit, € S,(L) and az_, +pBz,€S,(M).

But when we let » — oo, we obtain from our present results that i g and 2 g
have on (a, oo) an equal number, finite or infinite, of simple zeros. Hence

Corollary. The solutions of (1.1) in S,(L) are oscillatory if and only if the so-
lutions of (2.6) in S, (M) are oscillatory.

Equation (1.1) is (g, n — q)-disconjugate on (a, oo) if and only if equation
(2.6) is (g, n — q)-disconjugate on (a, oc).
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