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The aim of this paper is to study the oscillation theory of a two-term
ordinary differential equation through its asymptotic solutions. The equa-
tion under consideration will be of the form

y" = p(x)y, (1.1)

where p(x) is a sufficiently smooth, possibly complex valued function on
an interval [a, ). Asymptotic solutions for such equations with real valued
p(x)are discussed in several works, e.g., [4-9]. The qualitative behaviour
and the asymptotic representations of solutions of (1.1) are completely
different depending on whether p(x) is ‘‘large,”” say cx “ 9 p(x) is
“small,” say cx “*¢ or, the intermediate case, p(x) is close to cx .
When the coefficient p(x) is large, all the solutions of (1.1) which may
potentially oscillate do oscillate (For the rigorous meaning of this state-
ment see Theorem 3). In the second case the equation is disconjugate and
none of its solutions is oscillatory. In the intermediate case some solutions
may oscillate while the others do not. The asymptotics of the various
cases were studied in [4, 5, 8, 9]. A summary of all three cases is found
in[1, Chap. 2]. The domains of validity of the various asymptotic formulas
in the literature do not overlap, and there are gaps among them awaiting
further work. In this paper we shall refine the asymptotic solutions for
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0022-247X/94 $6.00

Copyright € 1994 by Academic Press, Inc.
All rights of reproduction in any form reserved.



284 ELIAS AND GINGOLD

Eq. (1.1) in some cases when p(x) is quite close to ¢x " and apply the
results to study the oscillation of (1.1).

The main tool to obtain asymptotic solutions is Levinson's theorem [11]
which we quote here as stated in [1]:

LEVINSON'S THEOREM. Let A(x) be an n X n diagonal matrix, A(x) =
diag{A,(x), ..., A, (X)}, and for each pair of integers i # j and for all t < x,

f’x re {\,(s) — \;(s)} ds

is bounded either from above or from below.

Let the n X n matrix R(x) satisfy fx |R(x)| dx < <. Then, as x — =,
the sysiem Y'(x) = {A(x) + R(x)}Y(x) has a matrix solution Y(x) with
the asymptotic form

Y(x) = {I + o(1)} diag {exp f“xl(:)dz, }

This theorem will be used below.

The first step in handling the asymptotics of the scalar differential Eq.
(1.1) is to convert it into a vectorial differential system ¥’ = A(x)¥ for
the vector y = (y, ', ..., y" V). The companion matrix A(x) is

0 10
1

1
(x) 0

From now on we consider the associated matrix differential system
Y = A(x)Y. (1.2)
The substitution Y(x) = V(x)Z, transforms Eq. (1.2) into
Z,=AZ, (1.3)
with A, = VTIAV - V'V",
Let r(x) € p(x)"" be one fixed branch of the nth root. This definition
assumes implicitly that p(x) admits a single valued sth root. Such is the

case when, for example, p(x) is real valued and one signed. In certain
cases, say, when p(x) < 0, it may be more convenient to take r =
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(—p)V". If we choose V = diag{l, r, ..., r" '}, then

V' = r'diag{0,1,2r,...,(n — DHr" 3},
VW' = r'irdiagf{0, 1, ...,n — 1},

and

o
o —_
<

Ax)=r —r'ir|. . . (1.4)
1 0 n~—1
From now on we have to separate between distinct cases according to

the relative magnitudes near infinity of the two terms in (1.4), that is, the
ratio between r(x) and r'(x)/r(x):

lim,_,, r2(x)/r'(x) is zero, finite and nonzero, or infinite.

If the limit does not exist at all, the equation is not fit for our analysis.

2
In this section we consider Eq. (1.1) when
limy . r'(x)/ri(x) = 0.
This case had been already studied in [1, 4, 5, 8]. It is known that if

[r"2x)r(x), [(r'(x)ir¥(x))'| € Li(a, *),

then (1) has asymptotic solutions y, = (1 + o(1))p " exp [* o, |p|'",
where o, is the /th root of unity. The above assumptions hold if p(x) is
not too close to cx ™", say, if p(x) = cx™ "¢, ¢ > 0. However, they do not
hold, for example, for p(x}) = x " logfx, 0 < 8 =< n, that is, r(x) = x~!
log®x, 0 < « = 1, since then r'%r® is not integrable. In the following
theorem we prefer to assume that r'*/r®> € L(a, <) and to include an
additional term in the integral.

THEOREM |. Let

@ r'x)irx)—0
(i) |r3x)rx |, [ oird(x)) | € Lia, =).
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Then system (1.2) has the asymptotic solution

Y = diag{l, r, ....r"" }W{I + o(1))

n—1)72 n _1 p!7
xdldg{r' W expf (p” + a7 p’*”")’””}’

where W = (") }y and ()" standing under the exp at the (I,)th
position of the second diagonal matrix is taken as the Ith branch of the
root. The solution may be written equivalently as

2.1

Y = diag{l,r, ..., " IW{ + o(l))

. o < nz_l prz l/n
xdxag{r (n l)’Zexpj (p+ >in Em) R

Remark. The last form has the desirable property that for n = 2 it reads

2.2)

12 \172
Y = diag{l, p"} W + o(l))diag{ exp[ <p+l% ) ,}

which is a known improvement of the WKB formula by Hartman and
Wintner [7], [1, Section 2.2].

Proof. According to our assumption, the first term of (1.4) is the domi-
nant one while the second may be considered as its small perturbation,
The eigenvalues of the first matrix are e®%, k =0, ..., n — 1, the nth roots
of 1, and it may be diagonalized by a Fourier matrix of eigenvalues

1 1
e o

= (pliByn-1 — .
(e™)k=0 PRI

it
2i8,

(2.3)

Thus, Z, = WZ, transforms (1.3) into Z; = A,Z,, with
As(x) = r(x) diagfe™®, ...} — r'ir W' diag{0, 1, ..., n — 1} W,

Next we simplify the second term of A,. We have W*W = WW* = nl, since

(WW*), = Z et = S pUlit = 5
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Thus, the matrix in the second term of A,(x) may be written as I/n W*
diag{0, 1, ..., n—1}W. The (k,k)th term of this Hermitian matrix is

n 3 e jeit = 1n 3 j= (n = DI2,

hence by the scalar transformation Z, = r(x)"""? Z, we get a similar
differential system with coefficient Ay(x) = A,(x} — (n — 1)/2r'/r I. Hence

r 1(x)A;(x) = diag{e™, ...} — r'/r* M,
where

n—1

3 1

M= 1/n W*diag{0, 1,....n— 1} W -

and ghfe main diagonal of M consists of zeros. For short let us denote
e(x) € —r'ir.

LEMMA 1. The eigenvalues of diagle™, ...} + eM are

nt—1
24

w=e+ e e+ 0, I1=0,..,n-1.

Since the proof of the lemma is not related to the main idea of the theorem,
it is delayed until the end of the section.

LEMMA 2. Let d,, ..., d,_, be distinct numbers and e(x) — 0. There
exists amatrix T(x) = I + Q(x), Q(x) = O(e) and diag Q(x) = 0, such that
T '(diag{d,, ...} + e(x) M)T = diag{u,(x), ...}.

Moreover, T™'T' = O(g’).

This is a standard result. See [6, Lemma 1],

Returning to the proof of the theorem, we make the transformation
Z, = TZ, which results in our case

A, =T A T-T7'T
r(x) diag{u, (x), ...} — O(&")

= diag {r(e"“o s emenry + 0((r’/r2)3)>, } + O

2 _ 2
- diag{(p”" c-1lp ) } + Or' 1)) + OW(r' IrY'),

24’12 p2+l/n
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where p'" standing at the /th position of the diagonal matrix means the
Ith branch of the root. The last equality results from re?® = p'7, r’
p'p""~'/n for the corresponding branch of p'". According to our assump-
tions the conditions of Levinson’s theorem are satisfied and

e =

. X 21 "”2
Z(x)=( + o(1)) diag {expf (p”" + n24n2 p—%-”—n), }

When we substitute successively Z, Z,, Z,, and Y, formula (2.1) of Theo-
rem 1 follows. The integrand in the diagonal term,

. nt—1 p?
pY (1 + 24n? pTn )

differs from

. n2_ 1 pI2 tin
a (‘ t S

by

O( l/n p’4)=0<14/7>
4 pAm reir,

which is integrable according to our assumptions. Thus the required for-
mula (2.2) is proved.

Proof of Lemma 1. The characteristic equation of diagi{d,, ..., d,_,}
+ eM is

do - A EMy, PN Smo‘n_l
det | &0 d = A
Sm,I,l_O e dn*l - A

=[l-n +622m,kmk,[[] (di—)\)] +0(}) =0
i j*k %,k

and its /th root is obviously A\, = d, + ce? + O(g*). When one puts this
back into the equation and compares powers of &, the result is

M=d 82/(2, mymy/(d, — d,) + O(?).
]
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In our case m,, = l/n ;:o’ WEjW, = l/n 2}:0' Je e and utilizing that
those are nth roots of unity, a short calculation results in m, =
(% — 1)"" and mym,; = (2 — 2 cos(§; — 6,)"". Thus Z,,, m,my,/
(d—d)=12e %2, (1 —cos(§, — 6,)'(1 — e %)1 As 9, — 8§, =
27(l — k)/n, the last expression equals 1/4 ¢~ E:;,‘ (1 — cosQ2mwk/n))!.
Now =, /(1 = x,) = P, (1)/P,_,(1), where P, ,(x) = II!_| (x — x,).
So all we need is a polynomial whose roots are 8, = cosQmk/n), k = 1,
...,n— 1. Now

(sin(n8/2)/sin(6/2))*
=n+2n—1)cosf + 2(n— 2)cos(28) + ... + 2cos(n — 1)8

with x = cos(8) is such P,_,(x) [12, Vol. 11, p. 74]. A direct calculation
gives P,_\(1) = n?, P,_(1) = n*(n® — 1), and the lemma follows.

3

When p(x) is real valued, Theorem 1 reveals information about the
oscillation of Eq. (1.1) and the distribution of the zeros of its solutions.
Since r'/r — 0 as x — =, r(x) cannot have arbitrary large zero points,
and so the real valued p(x) = r*(x) must be eventually nonzero and of a
fixed sign.

Thus, for real p(x) it is more convenient to take r o |p|"" and p
|p|"" e®, k =0, ..., n — 1, where e are the nth roots of sgn[p]. The
solution of system (1.2),

In —

Y = diag{l,r,....r" 1} WU + 0(1))

x 2 2
X diag {r“""”’2 expj (p”" + %z—’;z—lp—f;m), },

may be written as

x . 2 2 5
Y; = rle™(1 + o(1))r-" " exp [f (re"’j +2 lp—z—r“e""j):l

~(n-1H72 ; x o o n—1p?
= p "Wt exp [116j+f (re"1+ 2an? 57" e %} + o(1) |,

1, =0,..,n— 1. Since p(x) is real valued, the real and imaginary parts
of a solution are solutions too. If we denote



290 ELIAS AND GINGOLD

2

_[r n’—1p" 1) - -‘< n’—1p?
1(x)—f<r+ s o). s =["(r Traet ) NCAY

we may get real solutions and their /th derivatives, y¥, 1 =0, ..., n — 1,
of the form

r-n=b2*lexplcos 8, I(x) + o(1)] cos[sin 6; J(x) + 16, + o(1)], 3.2)
r~n2* explcos 8; I(x) + o(1)] sin[sin 6; J(x) + 16, + o(1)]. .

Next we shall show how are the above solutions related to the theory
developed in (2, 3]. Let S(¢y, ¢y, -.., ¢,) denote the number of sign changes
in the sequence of the nonzero numbers ¢, ..., ¢,, and for each solution
y of (1.1), we define the functional

Sy, x) L lim S(y(x + &), —y'(x + &), y'(x + &), ..., (= 1)y ™(x + ¢)).

e—0

For each fixed solution y of (1.1), S(y, x*) may be considered as a function
of x, and this function is used to study the qualitative behaviour of the
solutions. It was proved in [2, 3] that, for each solution y, S(y, x*) is a
nondecreasing function for x € [a, =) and there exists a ray (x,, <) on
which its value is ultimately constant. This terminal value is an integer
k, 0 = k = n, which satisfies the parity condition

(—1)"* = sgn[p].

Such an integer is called admissible. For example, one has for the solutions
of the equation y® = y,
Se ™, x ) =8 ", e e, e e ")=0,

S(sinx, x*) =S(cosx, x*) =2, S(er, x") =4, for every x,
while for the solutions of y¥ = —4y,

S(e " sinx,x") = S(¢e " cosx,x7) =1,
S(e*sinx,x*) = S(e*cosx,x*) = 3.
The quantity S(y, x*) was utilized in [2, 3] to present a basis {u,, ...,

u,_,} of the solution space of (1.1) which reflects the oscillatory nature of
the solutions and their behaviour near infinity. The following was shown:

(i) For every admissible integer k, the elements of this particular
basis satisfy
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Sleyuy_y + oy, x*)y =k on [a, ») (3.3)

for every ¢y, c,.

(1) For every pair of admissible integers r < k, a corresponding
minor of the Wronskian does not vanish:

W, u,, ., u_q,u,) #0. (3.4)

(ii)) If kis an admissible integer and u,_,, 4, happen to be nonoscilla-
tory then each of them satisfies

WPV >0,1=0,..., k-1, bV <0, 1=k,....,n— 1.

Hence, for every two admissible integers r < k, if w,_, u, and u,_,, u, are
nonoscillatory then w,_;, u, = o(u,_,), o(u,) near infinity. There arises the
question of how one should compare the rate of growth of oscillatory
solutions. One possible attempt to answer this question in [3] was to show
that if r < k are two admissible integers, then

Wiu, y,u,)=0Wu,_,,u)) asx— x, (3.5)

without any assumption about the oscillatory nature of the solutions (and
for a more general equation than (1.1)).

The solutions (3.2) that result from our asymptotic formulas enjoy simi-
lar properties, provided they are arranged in a suitable order. Let us
rename the n arguments of the nth root of sgn[p] so that

—l<scosfy=<cosf =<..<cosb,, <1l

It is easily seen that for an admissible &, that is when (—1)** = sgn[p],
one may take

0,_, = m — wkin, 0, = —m + wkin,
and thus
. =08 6, ,<cosf_=cosb, <cosb, =.. (3.6)
If K = 01s admissible, i.e., (=1)'p(x) > 0, then —1 = cos 6, < cos 6,
and if k = n is admissible, that is p(x) > 0, then cos 6,_, < cos 8,_, =
1. (By convention, in (3.6) disregard 6_,, 8,,, which are not defined at all.)

Hence, for an admissible integer k, 1 < k < n — 1, we may choose a pair
of solutions v,_,, v, such that for/ =0, ..., n — 1,
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vf, = r~n" D2 exp [—cosﬂ?kl(x) + o(l)}

3.y
cos [sinﬁj(x) + l<7r - Eﬁ) + o(l)],
n n
) — ,—(n—1/2+I — _Tr_k_
v =r exp | —cos—I(x) + o(1)
n 3.7,
sin [sinlli](x) + 1 (77 —ﬂ(—> + o(l)].
n n
If ¥k = 0 is admissible, and —~1 = cos 6, < cos 6, we take
o) = (= 1)/ r D2 exp[—1(x) + o(1)]. 3.7
|v{’| are decreasing functions since v{’v§*" < 0. Finally, if kK = n is
admissible, and cos 6, ,< cos 6,_, = 1, we have
i, = r "2 expli(x) + o(1)]. G Do

v,_, and its derivatives are increasing functions; (3.7); hold even for
[ = n, since r" (—1)"* = |p| sgn[p] = p.

The basis {vy, ..., v,_;} that is defined by (3.7),—(3.7),._, is not identical
with the basis used in [2, 3], but the two are closely related. Their similar
properties are as follows:

THEOREM 2. Let r < k be two admissible integers. The solutions vy,
eeey U,y satisfy

S(cwpy + v, x¥) =k foreveryc,, c¢,, (3.8)
W,_,, U, e, Uy s0) # 0 3.9

Sfor sufficiently large values of x. Moreover,

. W(U,,| > vr)
lim ———==

0. 3.10
x—x W(vk*l ) Uk) ( )

Proof. If we substitute (3.7) for (—1)'v{’,, then for large values of x

S, xMH =8 <cos(§ + o(1)), cos (C —%k+ o(l)), ..o COS(E — wk + o(l)))
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and

S, x*) =385 <sin(§ + o0(1)), sin (C — %k + o(l)), ey SINE — wk + o(l))),

where { = sin (wk/n) J(x). In the above sequences sign changes occur
when their terms satisfy either c;c;_; < 0 or ¢; = 0 and ¢;_;c;; < 0. In
both cases the o(1) terms have no influence on the number of the sign
changes and both of them equal k. The same holds as well for every
linear combination of v,_,, v,. If 0 is an admissible integer for (1.1), then
obviously S(vy, x*) = 0, and if n is admissible, then S(v,_,, x*) = n. Next,

W(U,_ |, U,y ooy Uy U) = 770 exp (—2 Z cos(mi/nm)I(x) + o(l))

r<isk
i=r(mod 2)
cos (sin -%’J(x) + o(l)), sin (sin%{.l(x) + o(l)),
X |cos (sin-ﬂ—rJ(x) + a7 - ﬂ+o(l)), sin (sinzfj(x) + 7~ sy o(l)),
n n n n

The last determinant is independent of J(x) and is equal, up to o(1), to a
nonzero constant. Thus, (3.9) holds. Equation (3.10) is implied by

W(v,_,,0) = r "exp (—2 cos%kl(x) + o(l)) sin (wk/n + 0(1)),

Tk wr
because cos 8, = —cos . > —cosT = cos 6,.

Equation (3.10) means that the solutions v,_,, v, are, in a sense, “‘larger”’
near infinity than v,_,, v,, r < k. This desirable property could not have
been deduced in [2, 3] without the additional assumptions of the pres-
ent work.

The solutions (3.7)—(3.7),.— give us an idea about the oscillatory behav-
iour of the solutions of (1.1). As limy_,, 7' (x)/r}(x) = 0,

x n’—1p” _,) x ( n*-1 (r')z)
= — — = + —
10 '[‘0 (f " 24n* p? ’ Lor ! 24 r’

409/186/2-2
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and

e _me (Y
j(X)_J»-“n’(l 24 <r2)>

tend to infinity if and only if f’r r — =, Consequently,

THEOREM 3. Let the assumptions of Theorem 1 be satisfied. Each
solution y of Eq. (1.1) either
(i) is oscillatory, or satisfies
(i) |yP?1—0,1=0,...,n— 1, (if0is admissible, (—1)"p > 0), or
(i) |yP|—> ol =0,..,n—1,(fnis admissible, p > 0),

ifand only if [ r — =,
Moreover, for each solution y(x) there is an admissible integer k such that

Tk log(r(x)"~ " y(x))
cos p —lex sup 10

and if y(x) is oscillatory, there is a sufficiently large x, such that the mth
zero of y{x) in (x,, <) is

Xy = J'(mn'/sin%k) + o(l),

where J™! denotes the inverse of J.

In the Russian literature the following definitions are well known (See [10]):
Eq. (1.1) is said to have Property A if for even n all its solutions are
oscillatory, and for odd n they are either oscillatory or satisfy

ly?|—0 asx—®, i=0,..n—1. (3.1D

Eq. (1.1) is said to have Property B if for even n all its solutions are
either oscillatory or satisfy (3.11) or satisfy

!y(”|_)oc as x — x, i=0,...n—l, (312)

and for odd n all the solutions are either oscillatory or satisfy (3.12). In
terms of these definitions, Theorem 3 states that under the listed assump-
tions Eq. (1.1) has Property A if p(x) > 0, and Property B if p(x) < 0.
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4
This section deals with the case

lim r3(x)/r' (x) is finite and nonzero.

Xx—x

This assumption is satisfied by the Euler equation y + ¢x ™"y = 0. It is
studied in (1, p. 93], but we formulate our results more explicitly.
r'(x)/r’(x) — const # 0 implies that r(x) — 0 as x - =, Introducing

s Y —P2(0ir(x), s =lim, s(x),

Eq. (1.4) may be rewritten as

0 010
Ax) = (=r'lr) l._ + s(x) 01 I
n—1 1 0
4.1
0 s O 01 0
1 s 0 1
=(=rini|l. 2 + [s(x) — s}
: ’ s 1
s n—1 1

Since s(x) — s — 0, the last term of this expression is a small perturbation
of the first one. In order to use Levinson’s theorem we have to diagonalize

0 s 0
1 s
2 . 4.2)
: s
s n—1
Its characteristic equation is
XMNEXA-D .. —n+1)—-s"=0, (4.3)
and let its eigenvalues be Ay, ..., A,_,. If the Ay, ..., A,_, are distinct and

s # 0, (4.2) may be diagonalized by the matrix

U= MOy =1~ 1+ DsHd, (4.4)
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whose columns are the corresponding eigenvectors
(LAST MM = Ds72, M = 1) oo (A = 4 2)s DT,

Note that det(U) = s™""""2V(\,, ..., A,_,), where V(),, ..., \,_,) is the
determinant of Vandermonde, 11 (A, — \)).

The transformation Z, = UZ, reduces then our system into Z; =
A,Z, with

A, = U'A U = (—r'/r)ldiag{r,. ..., A, ,} + [s(x) — s]U"'PU],

where P is the permutation matrix

Next we calculate M = U~'PU. Multiplying U from the left by P shifts
its rows cyclically upward and the last row becomes (1, ..., 1). But by
(4.3) we may replace the 1 at the (n, k)th entry by A0, — 1) ... A\, — n
+ Ds™ &k=0,1,..,n— 1, sofinally M equals

| 1 oA
Ao/s Ay/s

AN — 1)/s? M = 1)/s?

)\0(')\0 —D..(A\g—n+ 2)/s"!

Ay/s N/s
Ao(Ag — 1)/s? MO — 1s?
; 4.5)
Mfho = 1) o (hg — 1 + 1)/s”
The (r, g)th term of M, M, ,,r,q=0,.. n—1,equals
1 1 P | }\q/s 1
Aols As As A~ 1)s? /s
I N R Ay = 1) .., — 1+ 1)fst b

Moo = 1) .. (A = 7 + 257! Ay = D (g = 1+ Dis?

4
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where the rth column of the determinant consists of the gth column of
the rightmost matrix in the product (4.5). This follows easily by expanding
the last determinant according to its rth column. When we factor out
A /s from the rth column of the last determinant and s ' from its /th row,
there remains A s~ ' """ V2V (Ag, ..., ALy, A, = 1, Ay, oo, Ay, Thus,

Mr'q = S_l)qu()\o, viay A,Al N Aq - 1, Ar+l’ veay An_l)/v()\o, ceny An—l)
= s 0 [T, = 1= M/ T =)

i*r i®r
Since ¢(x) = (x — Xy) ... (x — A,_y), the last expression may be written as
57N, = DI’ — 1 = X))

On the other hand, since A, is a zero of ¢(A), it follows by (4.3) that
Age(h, — 1) = —ns", so that

M, , = —ns""Yo' (W)X, — 1 — A).

rq

In particular, M,, = ns" '/¢'(\,). Consequently, the eigenvalues of
A,(x) are

u(x) = =r'irlx, + [s(x) = sIM,, + O([s(x) — s]))]
= —r'lr{n, + [s(x) = slas" Yo' W) + O((r'In)[s(x) — 517,
r =0, ..., n — 1. By the identity s"(x) — s" = ns" '[s(x) — s] +

O{[s(x) — 51 this becomes
u,(x) = —r'lr[\, + [s"(x) = s"Ve'(N)] + O((r'In[s(x) — s1).
Finally, defining x and A(x) by

Kk + Ax) = s"(x) = p"* Y (—p'in)", Kk =s"=lims"(x), (4.6)

we have
e = =PI, + AR M) + O IN[s(x) — sP).

If the remainder term is integrable, we obtain by Levinson’s theorem that

Zy(x) = (I + o(1)) diag {exp f o0 dt, }
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Summarizing the previous details and calculating Z,, Y leads to the follow-
ing result:

r2 n pn+l
THEOREM 4. Let (—7) = " =k + Alx),

where k # 0 is a constant and A(x) — 0 as x — =. If the polynomial
eA)=AMA-1D..A=-n+1)—-k=0 4.7)
has n distinct zeros Ay, ..., h,_;, and (r'/r)A*(x) € L(a, =), then

Y = diag{l,r, ..., r""HUU + o(1))

1 , (4.8)
x di “he <,*-*" X—LA),....},
ag {r *P ® (}\o)f r
where U is the constant matrix defined in (4.4), or explicitly
(AN DD Cam Lor r
Yﬁ"( Pz +o(l) Jr(x) %" exp <P'(N)J v aAl, 49

Lj=0,...,n—1.

Remark. Our asymptotic formula refines the result of [1, Section 2.10].
For n = 2 it reduces to that of [1, Section 2.6].

ExAaMPLES. For p(x) = ax™", we have k = a, A(x) = 0. Let now
p(x) = alx" + b/(x"log x). For this case k = a, A(x) = b/log x + O(log >x),
—r'lr = x7'(1 + O(log™%x)), and (r'/r)A%(x) € L,(a, ). n solutions of the
scalar equation are given by

yi = xM(log x)Pe M + o(1), k=0,..,n—1.

5

When p(x) is real valued, Theorem 4 enables again an accurate analysis
of the oscillation or nonoscillation of Eq. (1.1). When an eigenvalue A is
real, the corresponding solution (4.9) is obviously nonoscillatory. How-
ever, much more information is available. Let A = a + i be a root of
4.7y and n + v = l'(A). Since p(x) is real valued, the real part of a
solution (4.9) is a solution as well. Since
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RelAA = 1) ... (A =+ Dr(x) "'}

-1
[Ta-))
i=0

-1
et cos <—ﬁ logr+ argl_[()\ —j))q
j=0

real solutions of (1.1) and their Ith derivatives, y", I =0, ..., n — 1 may
be written as

(-1 ,\‘r'
( [Ta=-p|+ 0(1))5’r"’”exp (nf —A)

j=0 r
cos (ﬁ logr— ¢, + Vf”:A + o(l)>,

-1 - ¢.1)
< [Toxa-5n +0(1))s1r‘”’exp <nf‘r—A)

J=0 F

sin <Blogr—d;,+ uf"%A+o(l)),

where §;, = arg HJ{;(',()\ —j), Jarg(A = j)| < =. Note that ["rira = o(log
r) since A(x) — 0. To classify these solutions and study their oscillation,
let us summarize some properties of (4.7):

LEMMA 3. The algebraic function Xk} which is defined by
F,k)=AMA-1D..A—n+1)—k=0 (5.2)

has only real critical points, which are the local maxima and minima
of the polynomial x(x — 1) ... (x — n + 1). Exactly two branches of \y(k),
oy Moy(k) meet at each critical point. For each critical value kg, the
corresponding double root Mxy) of (4.7) lies in a real interval (k — 1, k),
where k is an integer that satisfies the parity condition (—1)"™% = sgn[x,).
Let the two branches which meet at this point be named \,_(k), A\ (x).
As « varies on the half real line that contains x,,

limh,_ (k) =k—1, lim A (x) = &,

K0 k—0
while as |k| — =,

; -1 n=-1 _
M(x) = e Kk I/n_+_n + e Ol el-ln 4 s
) = ]+ I P e 5

A[\_l(K) = Xk(K)s

where 8, ..., 8,_, are arranged as in (3.6).
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n{’lroof. The branch points (A, «) of (5.2) are _slolutions of dF/d\ =
2o H,#j (A — ) = 0, that is, after division by HLO \ =D,

n—1 1

— =0,

A
and its n — 1 zeros lie in the intervals (0, 1), ..., (n ~ 2, n — 1). The
following details are simple. Equation (5.3) is obtained by asymptotic
solution of (5.2), but since the formulas will not be used here, the details
are omitted. As the branches do not intersect at non-real points, the
arguments 6, in (5.3) are as those in (3.6).

Figure 1 shows six branches of A\A — 1) ... (A ~ 5) — xk =0 forx €
[—600, 0] in the complex plane.

From now on we enumerate the eigenvalues Ay, ..., A,_, according to
the following convention: For every admissible integer k, 1l < ks n — 1,
the two roots of (4.7) which are located on the two branches of A(«) of
(5.2) which intersect in the interval (k — 1, k) will be named A,_,, A,. If
k = 0 is admissible, Ay will be the only root of (4.7) in (—=, 0), and if
k = n is admissible, then A,_, will be the root in (n — 1, »).

Accordingly, a basis vy, ..., v,_, of solutions will be chosen as following:
For an admissible integer &, 1 < k < n ~ 1, if \,_,, X\, are complex

0 1 2 3 4 S

Fig. 1. Six branches of A(A — 1) ... (A — 5) — « = 0 for x € [—600, 0].
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conjugates, \; = oy + iBy, 1o () =y + ivy, Yy, = arg H,,';(l) (A —J), then

-1 '
yo . b+l '
o, = ( jl;[) =0+ o(l))s r exp (”’)kj r A) (5.4),_,

X €Os (Bklogr— Y, t kaxf;A + o(l)),

r

~ I-1 ‘ G, r
o) = (jll()\k—J) +o(1))s lr-atlexp <"lk_[ ~r—A) (5.4,

X Sin (B’\ lOgr - dl],k + kax'r;A + 0(1)),

and if A,_,, A, are real valued, then

vl = (xj(xj “D.—IE D+ o(l))s"r(x)""f“exp ( «;,(l“ f ”;'A>, G-4)
J

j=k— 1,k If k=0 or k = n are admissible, then v{’ or v\, will be
given by the last formula withj = 0 orj = n — 1, respectively. Equations
(5.4);,j =0, ... n — 1, hold even for [ = n, because \;(\; — 1) ... (\; —
n+ Ds"=1,

The distribution of the zeros of real solutions of (1.1) follows easily
from (5.4).

THEOREM 5. Let the assumptions of Theorem 4 be satisfied. For each
solution y(x) there is an admissible integer k and a corresponding eigen-
value \; such that

Re{\;} = lin: sup%%i—%((—g.

If N is real and is in the interval (k — 1, k), y is nonoscillatory and satisfies
yOyD >0 forl1 =0, ..., k — 1 and yOy"V <0 forl =k, ..., n — 1,
hence the equation is eventually (k, n — k)-disfocal. If y(x) is oscillatory,
there is a sufficiently large x, such that the mth zero of y(x) in (xy, ®) is
given by

X, = H;'(mm) + o(1),
where H[' denotes the inverse of H,(x) = Im J:] = r'ir (A + AxYeo' (M)
THEOREM 6. Let p(x) be real valued and let it satisfy the assumptions

of Theorem 4. The basis of solutions vy, ..., v,_, which is defined above
satisfies (3.8)-(3.10).
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Proof. 1f A; is real and is located in the interval (k — 1, k), then (3.8)
trivially holds, since v{"'v{*" > 0 for /=0, ..., k — 1 and v{'v{"*? < 0 for
I =k, ...,n— 1.If X\ is complex valued, S(v,_,, x) equals

S(cos(Z + o(1)), —cos(C — ¢, + o(1)), ..., (—D)'cos({ — ¢, + o(1))), (5.9)

where { = Blogr + v ['rirA, and §,, = arg I—[J[;(I, (A, — Jj). In order to
see that S(v,_;, x*) = & for sufficiently large values of x, let us consider
A in the right hand side of (5.5) as a function of «,

S(cos(f), — cos({ — ¢(k)), ..., (—1)"cos( — ¥,(k)) (5.6)

Y, (x) = arg HJI-;(I] (A(x) —j), and let k vary continuously through real values
until A(x) approaches its critical real value in (k — 1, k). ¥,(x) is obviously
a continuous function of x, { = 0, ..., n. The integer valued function (5.6)
may vary with « only if one of the following happens: (a) An entry
cos({ ~ y(«)) changes its sign as « varies, while cos({ — ,_,(x))
cos({ — ¥, ,(k)) > 0. This is impossible, since both |{;,(k) — ¥,_,(x)| =
larg(A(k) — ! + 1)| and |, (k) — (k)| are less than 7. (b) Several
consecutive entries vanish for the same x, cos({ — ¥,(x)) = cos({ —
Y.(k)) = ... = 0. This, too, cannot happen since ;. (k) — ¥;(x) is not
a multiple of 7. Consequently (5.6) must have a fixed value as long as
M) is not real. To determine its fixed value, it is sufficient to let k approach
the critical value «,, such that A = Nkg) € (k — 1, k), (or to let |k| — x).
For this critical value arg(A — j) = 0, = 0, ..., k — 1, while arg(A — j)
=mj=k ...,n—1.Hencey,=0,[=0,....k,and ¢ =(k — Dm, [ =
k+ 1, ..., n (56) becomes now

S(cos(), — ¢os(d), ..., (—DF T cos(d), (—1F* ! cos(D), ..., (— ¥ cos()) = k.
This shows that v,_,, v, satisfy (3.8). Equation (3.9) is verified as it was
in Section 3.

Finally, W(v,_,, v,) = |A\Jr 2 exp(n, [* r'ir A) sin(y, ;) and [~ r'/r

A = o(log r) imply W(v,_,, v, )/ W(u,_,, Us) = [N IN ] r(x) R ~hate) gnd
(3.10) follows from Re X, < Re A, and r(x) — 0.

6
The final section deals with the case

lim_,. r2(x)/r'(x) = 0.
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This case requires a slight modification of the discussion of the previous
section, which excludes s(x) — 0. According to (4.1), let

0 s(x) 0
1 s(x)
Afdx) = (-r'lr) 2 , s(x) = —r(x)¥r'(x).
: s(x)
s(x) n—1

The eivenvalues of (—r/r')A (x) are the roots of the equation
AMA—-D..A—n+1—-Ax)=0, A(x) = s"(x),
namely,

A(x) =7+ (=" A N —j + D!+ O(AY), Jj=0,....,n—1. (6.1)

(—r/r')A,(x) may be diagonalized by
T(x) = O = D)o = T+ DTG0, (6.2)
whose columns

SUGAT, N)s TNy = Ds 73 L Ny = Dy =+ 2)s )T

ey NUA

are eigenvectors of A,(x). We have T; = (1/(j — D! + O(A))s(x)/ ! for
[ = jand T;; = O(A)s(x)’~ for j < I. Together this shows that T(x) = [ +
O(s) and T™'T" = O(s'). Therefore the transformation Z, = TZ, reduces
our system into Z; = A,Z, with

Ax(x) = (—=r'/r)[diag{ry(x), ..., N, (x)} + O(s)].
In order to use Levinson’s theorem, we need that (¥'/r)s’ = (r'/r)
(=r?r'y = =2¢ + r'lIr' € L\(a, *). Then
Z, = (I + o(1)) diag {exp[(—r’/r))\]},
Y(x) = diag{l, r,..., """} T(x)Z,.

As in the previous section, we conclude the following:

THEOREM 7. Let A(x)d-i——f pH(—p'iny" — 0 as x — = If r'Ir' —
2r' € Li(a, =), then system (1.2) has a solution
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Y = diag{l, r, ..., " }T(x)UI + o(1)) ]
i+ ' n-
X diag {r‘f exp (ﬂ—((r1—%i_l)'fx%A)},:o ,
where T(x) is the matrix defined in (6.2).

By observing that 7, ; = s//j! and substituting for r, 5, and A, we get a
basis of solutions for the scalar Eq. (1.1):

— AYi (—l)j_l x pn
7(x) = (plp’) exp (j!(n ) <p'/n>"*')” o)

These solutions are obviously nonoscillatory, hence Eq. (1.1) is eventu-
ally disconjugate.

Remark. If o(A) = AA = 1) ... (A — n + 1), then l/p'(x;) = (—1)* 7"/
Jjlin —j — 1!, although the assumptions in Theorems 4 and 7 are different.

If p(x) and r(x) = p'"(x) are real valued functions, the assumption that
s(x) = —r¥r' = 0 includes that r?/r' is defined on some neighborhood of
infinity and ¢’ # 0 there. The monotonic function r(x) satisfies |r'/r?| >
/e for x > x_, hence 1/r — % as x — o and r(x) decreases monotonically
to 0. Therefore ' € L, and it suffices to assume that rr'/t' € L,.

ExampLE. Theorem 6 may be applied, for example, for p(x) = b/x"*¢,
€ > 0, b/(x" loghx), B8 > 0, and b/(x" log (log x)). For the second of these,
the solutions are

y; = 0TS+ o(1)),  j=0,..,n-1,

(=17 1b/(B = Djln —j = D

i

c(J)

REFERENCES

1. M. S. P. EasTHAM, ‘‘The Asymptotic Solution of Linear Differential Systems,’* Oxford
Univ. Press (Clarendon), London/New York, 1989.

2. U. ELias, A classification of the solutions of a differential equation according to their
asymptotic behaviour, Proc. Roy. Soc. Edinburgh Sect. A 83A (1979), 25-38.

3. U. ELias, A classification of the solutions of a differential equation according to their
behaviour at infinity, Proc. Roy. Soc. Edinburgh Sec. A 100A (1985), 53-66.

4. M. V. FEporiuk, Asymptotic properties of the solutions of ordinary nth order linear
differential equations, Differential Equations 2 (1966), 250-258. [Transl.]

5. H. GINGoLD, On the location of zeroes of oscillatory solutions of y™'= c(x)y, Pacific
J. Math. 119 (1985), 317-336.



ASYMPTOTICS AND OSCILLATION 305

. W. A. Harris AND D. A. LuTtz, On the asymptotic integration of linear differential
systems, J. Math. Anal. Appl. 48 (1974), 1-16.

. P. HARTMAN AND A. WINTNER, Asymptotic integration of linear differential equations,
Amer. J. Math. 77 (1955), 48-86, 932.

. D. B. HINTON, Asymptotic behaviour of solutions of ("% + gy = 0, J. Differential
Equations 4 (1968), 590-596.

. D. B. HINTON, Asymptotic behaviour of solutions of disconjugate differential equations,
in *‘Proc. Alabama Conf. Differential Equations, North-Holland Mathematics Studies
92,”" Amsterdam.

. I. T. KiGUrRaDzE AND T. A. CHANTURIA, ‘‘Asymptotic Properties of Solutions of
Nonautonomous Ordinary Differential Equations,”’ Nauka, Moscow, 1990.

. N. LevinsoN, The asymptotic nature of solutions of linear systems of differential equa-
tions, Duke Math. J. 15 (1948), 111-126.

. G. PoLya aAND G. SzEGO, *‘Problems and Theorems in Analysis,”’ Springer-Verlag,
New York/Heideiberg/Berlin, 1972,



