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Abstract. The Liouville-Green (WKB) approximation is generalized to a matrix di↵erential
equation with an analytic, symmetric matrix coe�cient. Some applications to oscillation
problems are given.

1. Introduction. Consider the vector and matrix di↵erential equations

~y 00 = A(t)~y, a  t  1,

Y 00 = A(t)Y, a  t  1,
(1)

where A(t) is a Hermitian, n⇥ n matrix function, analytic on [a,1] and invertible
at 1. The main objective of this work is to provide a new tool for the investi-
gation of this system. We develop a complex-valued and a real-valued vector and
matrix analog to the Liouville-Green (L-G, WKB) asymptotic approximation. This
is an interesting endeavor in its own right and its development requires nontrivial
modifications to the scalar equation method. Analyticity of A(t) is a technical as-
sumption which makes our estimates simple. Invertibility of A(t) is essential and has
an analogue even for the scalar approximation. An example is given in Section 4.

One application of our asymptotic approximation is in oscillation theory. Recall
that b is called a conjugate point of a if there exists a nontrivial vector solution ~y
of (1) such that ~y(a) = ~y(b) = 0. Here, in contrast with the scalar second-order
equation, the various conjugate points are associated with di↵erent solutions. The
relation between existence of conjugate points and the eigenvalues of A(t) and

R t
A

is extensively studied in the literature. The di↵erence between our approach and
those by, e.g., Butler, Byres, Coles, Dosley, Mingarrelli ([1–5,10]) is that we obtain an
asymptotic formula for Y, Y 0, complex and real valued, and an asymptotic expression
for a determinant that determines the conjugate points. This leads us to some
conjectures and to some results which were not obtained in any other way before.
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First we notice that A(t) may have both positive and negative eigenvalues. Our
determinant representation shows that (1) has conjugate points approximately at
the zeros of the function

kY
j=1

sin
Z t

a
|��j (s)|1/2 ds,

where ��j are the negative eigenvalues of A(t). Since two negative eigenvalues could
give rise asymptotically to the same conjugate points, it is not a trivial matter to
count all distinct conjugate points asymptotically. Anyway, this leads us to the
conjecture that the total number of conjugate points of a in [a, t] depends asymp-
totically only on the negative eigenvalues ��j of A(t) as t ! 1 and the positive
eigenvalues �+

j do not contribute to oscillation. Compare, for example, with [9] for
related eigenvalue problems.

Our method can easily handle more complicated boundary value problems,

⌦1Y (a) + ⌦2Y
0(a) = 0, ⌦̃1Y (b) + ⌦̃2Y

0(b) = 0, a < b,

where ⌦1,⌦2, ⌦̃1, ⌦̃2 are certain matrices. The analysis of Coles ([4]) will need a
substantial modification to handle these boundary conditions.

Another virtue of our approximation is that it could be an intermediate step to
the development of an asymptotic formula to problems in, e.g, wave propagation and
quantum mechanics, utt = A[u](t), where A is an infinite-dimensional symmetric or
antisymmetric operator. See, e.g., Edelstein ([7]).

2. Preliminaries and linear transformations. With the notation z =
(~y, ~y 0)T , (1) is written as

z0 =
✓

0 I
A 0

◆
z.

In fact, it will be more convenient to study the corresponding 2n⇥2n matrix system

Z0 =
✓

0 I
A 0

◆
Z. (2)

Here and in the sequel n ⇥ n and 2n ⇥ 2n matrices are both denoted by capital
letters. However, it is easy to distinguish between them according to the context or
the block structure. Since A(t) is Hermitian and analytic, there exists according to
Rellich’s theorem a unitary matrix U(t), analytic in t, such that

A = U⇤DU, (3)

where
D(t) = diag {�1(t), . . . ,�n(t)} (4)
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and �1(t), . . . ,�n(t) are the real, analytic eigenvalues of A(t). For a global and
di↵erent method of derivation see Gingold and Hsieh ([8]).

To carry out the forthcoming three simple transformations, we define powers of
A(t) by

A↵(t) = U⇤(t)D↵(t)U(t),

where D↵ = diag {�↵
1 , . . . ,�↵

n} is chosen as one of the possible branches. Since
A(t) is invertible and �i(t) 6= 0, this choice causes no di�culties. Now let us define

T1 =
✓

A�1/4 A�1/4

A1/4 �A1/4

◆
, T�1

1 =
1
2

✓
A1/4 A�1/4

A1/4 �A�1/4

◆
.

Our first change of variables, Z = T1Z1, transforms (2) into

Z01 =
h
T�1

1

✓
0 I
A 0

◆
T1 � T�1

1 T 01

i
Z1.

This is, by direct calculation,

Z01 =
h✓A1/2 0

0 �A1/2

◆
+ R1

i
Z1 (5)

with R1 = �T�1
1 T 01. A second change of variables,

Z1 = T2Z2, T2 =
✓

U⇤ 0
0 U⇤

◆
,

takes (5) into

Z02 =
h✓D1/2 0

0 �D1/2

◆
+ R2

i
Z2, (6)

where
R2 = T�1

2 R1T2 � T�1
2 T 02 = �(T1T2)�1(T1T2)0. (7)

Note that
T1 =

✓
U⇤ 0
0 U⇤

◆✓
D�1/4 D�1/4

D1/4 �D1/4

◆✓
U 0
0 U

◆
,

and
T1T2 =

✓
U⇤ 0
0 U⇤

◆✓
D�1/4 0

0 D1/4

◆✓
I I
I �I

◆
. (8)

Equation (6) will be considered as a small perturbation of the diagonal system

W 0 =
✓

D1/2 0
0 �D1/2

◆
W, (9)
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whose solutions are

W =
✓

exp
R

D1/2 0
0 exp

R
�D1/2

◆
C.

To reduce (6) to (9) we look for a transformation

Z2 = (I2n + P )W. (10)

(The notation I2n is reserved for the 2n ⇥ 2n identity matrix while I denotes the
n ⇥ n one.) Substituting (10) into (6) and comparing with the expected (9), one
sees that I2n + P must satisfy

(I2n + P )0 =
✓

D1/2 0
0 �D1/2

◆
+ R2

�
(I2n + P )� (I2n + P )

✓
D1/2 0

0 �D1/2

◆�
;

(11)
that is,

P 0 =
✓

D1/2 0
0 �D1/2

◆
P � P

✓
D1/2 0

0 �D1/2

◆
+ R2(I2n + P ). (12)

This sequence of formal manipulations is justified if we can show that (12) has a
solution P (t) which can be estimated in a satisfactory way near t = 1. If this can
be done, we obtain a fundamental solution Z = T1T2(I2n + P )W. If we put

I2n + P =
✓

I + P11 P12

P21 I + P22

◆

and T1T2 as in (8), then

Z =
✓

U⇤ 0
0 U⇤

◆✓
D�1/4 0

0 D1/4

◆✓
I + P11 + P21 I + P12 + P22

I + P11 � P21 �I � P22 + P12

◆

⇥
✓

exp
R

D1/2 0
0 exp

R
�D1/2

◆
C. (13)

3. Asymptotic decomposition. We intend to prove the existence of a continu-
ous transformation (10) such that P is small in some norm and I2n +P is invertible
on some [a,1). By variations of parameters the general solution of an equation
P 0 = FP + PG + H is given by

P (t) = W (t)

C +

Z t

W�1(s)H(s)
�
V T (s)

��1
ds

�
V T (t), (14)
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where W is a basic solution of W 0 = FW and V of V 0 = GT V . In the case of
equation (12),

F = �G =
✓

D1/2 0
0 �D1/2

◆
, W (t) = expK(t), V (t) = V T (t) = exp(�K(t)),

with

K(t) ⌘
✓R

D1/2 0
0 �

R
D1/2

◆
,

are all 2n⇥ 2n diagonal matrices and H = R2(I2n + P ). If we take in (14) C = 0,
it becomes the integral equation

P (t) =
Z t

exp(K(t)�K(s))R2 exp(�K(t) + K(s)) ds

+
Z t

exp(K(t)�K(s))R2P (s) exp(�K(t) + K(s)) ds,

(15)

where the lower limit of integration in the (j, k)th term, lj,k, may be determined
individually for each term. Since all we need is one suitable “small” solution P (t)
of (12), we loose no generality by taking the most convenient choice.

Now we estimate the first term of (15).

Lemma. It is possible to choose the lower limits of integration as lj,k = b < 1 or
lj,k =1, respectively, so that all the 2n⇥ 2n terms of

J(t) ⌘
Z t

exp(K(t)�K(s))R2 exp(�K(t) + K(s)) ds (16)

are O(t�µ) as t ! 1 for some positive µ. Moreover, for a su�ciently large b, all
|Jjk(t)| will be uniformly small on [b,1).

Proof.

exp(K(t)�K(s)) = diag
�

exp
Z t

s
�1/2

1 , . . . , exp
Z t

s
�1/2

n ,

exp
Z t

s
��1/2

1 , . . . , exp
Z t

s
��1/2

n

 
.

A typical term of (16) is

Jj,k =
Z t

lj,k

�
exp

Z t

s

⇥
±�1/2

j (⌧)⌥ �1/2
k (⌧)

⇤
d⌧
�
rj,k(s) ds, j, k = 1, . . . , 2n. (17)
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Let
�j,k(t) = ±�1/2

j (t)� (±�1/2
k (t)), j, k = 1, . . . , 2n.

Here and later on it will be agreed that the sign which precedes �1/2
i is (+) if

i 2 {1, . . . , n} and it is (�) if i 2 {n + 1, . . . , 2n}.
First we show that it is possible to choose lj,k < 1 or lj,k = 1 so that the

corresponding kernels

exp
Z t

s
�j,k(⌧) d⌧, j, k = 1, . . . , 2n, (18)

will be bounded on lj,k  s  t < 1 or on a  t  s < 1 = lj,k, respectively.
�i(t) is real analytic on [a,1] and �i(t) 6= 0 since it is assumed that A(t) is invert-
ible. Therefore each �j,k(t) is analytic there, too. Consequently, there exists a ray
[bjk,1) on which either

Re�j,k(t) > 0 (19)

or
Re�j,k(t) < 0 (20)

or
Re�j,k(t) ⌘ 0. (21)

For example, if �j , �k < 0, then (21) holds. If, say, �j > 0 and �k < 0, then either
(19) or (20) holds, according to the sign which precedes �1/2

j . If �1/2
j , �1/2

k > 0, �j,k

is real valued and analytic on [a,1] and it is either identically zero or it does not
vanish on some neighborhood [bjk,1), bjk > 0, of t = 1. Again one of (19)-(20)-
(21) holds. These three conditions are standard in the analytic theory of singular
di↵erential equations, e.g. Wasow ([11]) and Eastham ([6]).

Now we determine ljk, j, k = 1, . . . , 2n, so that (18) will be bounded for s 2
[ljk, t]. Let us denote b = max{bjk} > 0. If (19) or (21) holds, we choose ljk = 1
and the integral (17) is considered on t  s < 1 ⌘ ljk. If (20) holds, take ljk = b
and the integration of (17) is on ljk ⌘ b  s  t. If Re�j,k(t) =

P1
0 ↵it�i happens

to be O(t�2), then Re�j,k 2 L[a,1) and (18) is bounded for either choice of ljk.
According to the above determinations, Jj,k ! 0 as t ! 1. Recall that A(t) =

A(1)+O(t�1), and so is U(t). Therefore, according to (7), R1 = �T�1
1 T 01 = O(t�2)

and R2 = O(t�2) and their derivatives are O(t�3). If Re�j,k(t) � 0 and so ljk =1,
then ��exp

�
�
Z s

t
�j,k(⌧) d⌧

���  1, t  s < lj,k =1

and ��Jj,k(t)
�� 

Z 1

t
|rjk(s)| ds =

Z 1

t
O(s�2) ds = O(t�1). (22)
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If ljk = b, that is when Re�j,k(t) < 0, then the estimate of (17) is di↵erent.
Let Re�j,k(t) = ↵ + �t�1 + O(t�2) < 0 on [b,1). If ↵ 6= 0 then there exists
↵0, ↵ < ↵0 < 0, such that Re�(t)  ↵0 < 0 on [b,1] and

��Jj,k(t)
�� =

Z t

b
e↵0(t�s)O(s�2) ds

= � 1
↵0

e↵0(t�s)O(s�2)
���t
s=b

+
Z t

b

1
↵0

e↵0(t�s)O(s�3) ds

 O(t�2) +O(e↵0t) +
Z t/2

b
e↵0(t�s)O(s�3) ds +

Z t

t/2
e0O(s�3) ds

 O(t�2) + e↵0(t/2)

Z 1

b
O(s�3) ds = O(t�2). (23)

If ↵ = 0 but � < 0, then there exists �0, � < �0 < 0, such that Re�j,k(t)  �0t�1 <
0 on [b,1], b > 0. Now

��Jj,k(t)
�� 

Z p
t

b
exp
�Z t

s
�0⌧�1 d⌧

�
O(s�2) ds +

Z t

p
t
e0O(s�2) ds (24)

 e�0(log t�log
p

t)

Z 1

b
O(s�2)ds +O(t�1)

���tp
t
= O(t�

0/2) +O(t�1/2)! 0.

If ↵ = � = 0, that is, Re�j,k(t) = O(t�2), then by a previous remark we take
ljk =1. Thus, in each case Jj,k(t) = O(t�µ) as t!1 for some 0 < µ < 1/2.

A reevaluation of the above calculation shows that each term is uniformly small on
some ray [b,1) either because

R1
b |rjk| =

R1
b O(s�2) is a small number or becauseR t

t/2 |rjk| and
R tp

t |rjk| are small for t � b.

Theorem. There exists a solution P (t) of (12) such that P (t) = O(t�µ) as t!1.

Proof. We can fix the lower limit b in the integral (16) so that not only Jj,k(t)! 0
as t ! 1 but even so that

��Jj,k(t)
��  ⇢ < 1 on [b,1). On the space of contin-

uous, bounded matrix-valued functions on [a,1) equipped with the norm kPk =
maxj,k

�
supbt<1 |Pjk(t)|

�
, we define the linear operator

L
⇥
P
⇤
(t) ⌘

Z t

exp(K(t)�K(s))R2(s)P (s) exp(�K(t) + K(s)) ds. (25)

According to the choice of b it is clear that the norm of the operator L satisfies
kLk  ⇢. By this notation (16) is

�
Jj,k

�
⌘ L

⇥
I
⇤

and equation (15) is P = L
⇥
I +P

⇤
.

Iterating this,

P = L
⇥
I + L

⇥
I + P

⇤⇤
= L

⇥
I
⇤
+ L2

⇥
I
⇤
+ L2

⇥
P
⇤
,
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and eventually

P =
1X

m=1

Lm
⇥
I
⇤
.

This formal solution is actually a solution thanks to the convergence of the series
and ||P ||  1/(1�⇢). In fact we can say more about the rate of convergence of P (t)
as t ! 1. The integral equation (15) is P (t) = L

⇥
I
⇤

+ L
⇥
P
⇤
. By (25) we get an

elementwise estimate

|Pj,k(t)| 
�
L
⇥
I
⇤
+ kPkL

⇥
I
⇤�

j,k
, (26)

and the required estimate follows from L
⇥
I
⇤

= O(t�µ) and kPk  1/(1� ⇢).

4. An example. Let A be the 2⇥ 2 symmetric matrix

A =
✓
⌘(t) !(t)
!(t) ⌘(t)

◆
,

where !(t) = !0 + !1t�1 + . . . , !0 > 0 and ⌘(t) = ⌘1t�1 = . . . . For this case
D(t) = diag{�! + ⌘,! + ⌘}, D1/2(t) = diag{i(! � ⌘)1/2, (! + ⌘)1/2} and

U =
1p
2

✓
1 1
1 1

◆
.

Since U is a constant matrix, the product T1T2 contains only one variable factor
and R2 = �(T1T2)�1(T1T2)0 simplifies to

�
h✓U⇤ 0

0 U⇤

◆✓
D�1/4 0

0 D1/4

◆✓
I I
I �I

◆i�1
✓

U⇤ 0
0 U⇤

◆✓
D�1/4 0

0 D1/4

◆0

⇥
✓

I I
I �I

◆
=

1
4

✓
0 D�1D0

D�1D0 0

◆
.

(16) becomes

J(t) =
1
4

Z t✓ exp
R t

s D1/2 0
0 exp

R t
s �D1/2

◆✓
0 D�1D0

D�1D0 0

◆

⇥
✓

exp
R t

s �D1/2 0
0 exp

R t
s D1/2

◆
ds

=
1
4

Z t✓ 0 D�1D0 exp
�
2
R t

s D1/2
�
d⌧

D�1D0 exp
�
�2
R t

s D1/2
�
d⌧ 0

◆
ds.
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In each of the four nonzero terms of J we define lower limits as the following:

4J13(t) =
Z t

1

(! � ⌘)0
! � ⌘ exp

�
2i
Z t

s
(! � ⌘)1/2 d⌧

�
ds, J31(t) = J13(t)

4J24(t) =
Z t

1

(! + ⌘)0

! + ⌘
exp
�
2
Z t

s
(! + ⌘)1/2 d⌧

�
ds,

4J42(t) =
Z t

b

(! + ⌘)0

! + ⌘
exp
�
�2
Z t

s
(! + ⌘)1/2 d⌧

�
ds, b  t <1.

It follows directly by integration by parts or by estimates (23)–(24), that J(t) =
O(t�1) as t!1. By additional substitution of L

⇥
I
⇤

= J into (25) we get that P =P
Lm
⇥
I
⇤

has the same o↵ diagonal 2⇥ 2 block structure as J ; i.e., P11 = P22 = 0.
It follows thus from (13) that the 2n independent vector solutions ~y of (1) are the
2n columns of

U⇤D�1/4(I + P21) exp
�Z

D1/2
�
, U⇤D�1/4(I + P21) exp

�
�
Z

D1/2
�
.

5. Real-valued representation. The purpose of this section is to derive from
(13) 2n linearly independent, real-valued solutions of (2) (and (1)) for the case that
A(t) is a real-valued symmetric matrix. There are two reasons for doing so. First,
it is useful to have a fundamental set of real-valued solutions. Secondly, in the next
section we shall need to find the zeros of a determinant that is related to the question
of oscillation. Working with complex-valued solutions, we would have to show that
both the real and the imaginary parts of that determinant vanish simultaneously.
In contrast, working with real-valued solutions (and determinants), this problem is
resolved by elementary means.

Without loss of generality let

�i(t) < 0 on [b,1) for i = 1, . . . , k,

�i(t) > 0 on [b,1) for i = k + 1, . . . , n,

and let D be decomposed into the blocks D =
✓

D� 0
0 D+

◆
, where

D� = diag {�1, . . . ,�k}, D+ = diag {�k+1, . . . ,�n}.

Analogously I =
✓

I� 0
0 I+

◆
, where I�, I+ denote the k⇥k and (n�k)⇥(n�k) iden-

tity matrices, respectively. Let |D�| be a shorthand notation for diag {|�1|, . . ., |�k|}.
According to this notation

exp
Z

D1/2 =
✓

exp i
R
|D�|1/2 0
0 exp

R
D1/2

+

◆
.
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The block structure of D induces a similar structure also on the n⇥n blocks of the
matrix ✓

I + P11 + P21 I + P12 + P22

I + P11 � P21 �I � P22 + P12

◆

of (13), and each Pij splits into
kz}|{ n�kz}|{✓

P 11
ij P 12

ij

P 21
ij P 22

ij

◆  
k 
n� k

.

Note that (26) enables us to estimate each element in every block P lm
ij by the

corresponding element of J = L
⇥
I
⇤
. For example, each element of P 11

11 corresponds
to one of L

⇥
I
⇤11
11

, which is determined by �(t) = i|�j |1/2 � i|�l|1/2, �j ,�l < 0.
Thus, in the proof of the lemma we take ljl = 1 and by (22), P 11

11 (t) = O(t�1).
The elements of P 12

11 correspond to � = i|�j |1/2 � �1/2
l , �j < 0 < �l, Thus by (23)

P 12
11 (t) = O(t�2). On the other hand the elements of L

⇥
I
⇤22
11

and L
⇥
I
⇤22
22

depend on
� = �1/2

j � �1/2
l , �j ,�l > 0, hence it is estimated by (23) or (24). Consequently

P 22
11 (t), P 22

22 (t) = O(t�µ) with µ determined by (24), and these are the only blocks
with such an estimate. We shall not elaborate on this any more, but use rather an
estimate P lm

ij = O(t�⌫) for some positive ⌫.
To simplify (13), we replace P11 + P21, P12 + P22, P11 � P21, �P22 + P12 by

Q11, Q12, Q21, Q22, respectively, and put

D1/4 =
✓
|D�|1/4 0

0 D1/4
+

◆✓
exp( i⇡

4 I�) 0
0 I+

◆
.

Since |D�|1/4, D1/4
+ and the orthogonal U are real valued, it is su�cient first to

simplify three of the factors of (13), namely2
6664

e
�i⇡
4 I�

I+

.......... . . . . . . . . . . . . . . . . . . . . . . . . . ..........
e

i⇡
4 I�

I+

3
7775

⇥

2
6664

I� + Q11
11 Q12

11

Q21
11 I+ + Q22

11

.........
I� + Q11

12 Q12
12

Q21
12 I+ + Q22

12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I� + Q11

21 Q12
21

Q21
21 I+ + Q22

21

.........
I� + Q11

22 Q12
22

Q21
22 I+ + Q22

22

3
7775 (27)

⇥

2
6664

exp
�
i
R
|D�|1/2

�
exp
�R

D1/2
+

�
.......... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..........

exp
�
�i
R
|D�|1/2

�
exp
�
�
R

D1/2
+

�

3
7775 .
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To reduce the volume of calculations, we treat first in detail the upper left n ⇥ n
block of (27) which simplifies to

 �
I� + Q11

11

�
exp
�
i
R t

a |D�|1/2 � ⇡
4 I�

�
Q12

11 exp
R t

a D1/2
+

Q21
11 exp

�
i
R t

a |D�|1/2
� �

I+ + Q22
11

�
exp

R t
a D1/2

+

!
.

Each diagonal term of the k ⇥ k block
�
I� + Q11

11

�
exp
�
i
R t

a |D�|1/2 � ⇡
4 I�

�
is

(1 + qje
i✓j ) exp i

�Z
|�j |1/2 � ⇡

4
�
, 1  j  k,

where qj = O(t�⌫). Its polar decomposition is of the form

(1 + ⇢11,jj) exp
�
i

Z
|�j |1/2 � ⇡

4
+ �11,jj

�
, j = 1, . . . , k,

with real ⇢11,jj , �11,jj = O(t�⌫). The o↵-diagonal terms of the same block are

|q11,jl| exp
�
i

Z
|�l|1/2 � ⇡

4
+ �11,jl

�
, 1  j 6= l  k,

with q11,jl = O(t�⌫). Thus the decomposition of the block into diagonal and o↵-
diagonal matrices is

�
I� + R11

�
�
exp
�
i

Z t

a
|D�|1/2 � ⇡

4
I� + ��

�
+ QOFF

11 ,

where R11
� , �� are diagonal k ⇥ k matrices, both O(t�⌫), and QOFF

11 = O(t�⌫) is
o↵-diagonal.

Similarly, (I+ + Q22
11) exp

R
D1/2

+ may be decomposed as

�
I+ + R22

+

�
exp
�Z t

a
D1/2

+ + i�+

�
+ QOFF

22 exp
�
i

Z t

a
D1/2

+

�

with real diagonal R22
+ , �+ = O(t�⌫) and QOFF

22 = O(t�⌫). Any element of the
k ⇥ (n� k) block

Q21
11 exp

�
i

Z t

a
|D�|1/2

�

is
|q11,jl| exp

�
i

Z
|�l|1/2 + �11,jl

�
, l = 1, . . . , k, j = k + 1, . . . , n,
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with |q11,jl| = O(t�⌫) and Q12
11 is O(t�⌫) exp

R t
a D1/2

+ . Thus we get a sum of a
diagonal and an o↵-diagonal matrix✓�

I� + R11
�
�
exp
�
i
R t

a |D�|1/2 � ⇡
4 I� + ��

�
0

0
�
I+ + R11

+

�
exp
�R t

a D1/2
+ + i�+

�
◆

+

 
O(t�⌫) O(t�⌫) exp

�R t
a D1/2

+

�
O(t�⌫) O(t�⌫) exp

�R t
a D1/2

+

�
!OFF

.

The upper right n⇥ n block of (27) becomes similarly
✓�

I� + R12
�
�
exp
�
�i
R t

a |D�|1/2 � ⇡
4 I� + ��

�
0

0
�
I+ + R12

+

�
exp
�
�
R t

aD1/2
+ + i�+

�
◆

+

 
O(t�⌫) O(t�⌫) exp

�
�
R t

a D1/2
+

�
O(t�⌫) O(t�⌫) exp

�
�
R t

a D1/2
+

�
!OFF

.

2n real-valued independent vector solutions of (1) are obtained by taking real and
imaginary parts of the columns of the above matrices and multiplying them from
the left-hand side by U⇤|D|�1/4. The real parts may be written as follows: 2k
oscillatory solutions result from the columns of

kz }| {
M1 =

✓
(I� + R11

� ) cos
�R t

a |D�|1/2 � ⇡
4 I� + ��

�
+O(t�⌫)

O(t�⌫)

◆
}k
}n� k

and
kz }| {

M2 =
✓

(I� + R11
� ) sin

�R t
a |D�|1/2 � ⇡

4 I� + ��
�

+O(t�⌫)
O(t�⌫)

◆
}k
}n� k

,

while 2(n� k) nonoscillatory solutions are extracted from

n�kz }| {
M3 =

 
O(t�⌫) exp

�R t
a D1/2

+

�
�
I+ + R11

+

�
exp
�R t

a D1/2
+

�
+O(t�⌫) exp

�R t
a D1/2

+

�
!
}k
}n� k

,

and
n�kz }| {

M4 =

 
O(t�⌫) exp

�
�
R t

a D1/2
+

�
�
I+ + R12

+

�
exp
�
�
R t

a D1/2
+

�
+O(t�⌫) exp

�
�
R t

a D1/2
+

�
!
}k
}n� k

.
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Here I± + R± denote the diagonal parts of their blocks and they determine the
dimensions of the block structure. Phase shifts �± appear explicitly in M1,M2 but
are absorbed in the O terms in M3,M4. The 2n-dimensional space of solutions of
(1) consists of

U⇤|D|�1/4
�
M1(t) M3(t) M2(t) M4(t)

�
~c, ~c 2 R2n.

6. Applications to oscillation theory. There exists a solution of (1) which
satisfies the two-point boundary conditions

~y(a) = ~y(t) = 0 (28)

if and only if the determinant of the 2n⇥ 2n matrix

! =
✓

M1(a) M3(a) M2(a) M4(a)
M1(t) M3(t) M2(t) M4(t)

◆
(29)

vanishes. Due to the complexity of the formulas which appear in each of its blocks, it
is technically di�cult to write them explicitly all at once, so we need some compact
notation and verbal description of the required calculations.

As remarked in the lemma, the perturbation term P (t) not only tends to zero as
t ! 1, but by a suitable choice of the point a it can be made uniformly small on
the whole [a,1). Consequently, this holds also for all terms of the form O(t�⌫) in
(29). So first we concentrate on the role of the other explicitly given elements.

Let

 � =
Z t

a
|D�|1/2,  + =

Z t

a
D1/2

+ .

To neutralize the e↵ect of the exponentially growing terms, let us multiply (29)
from the right by the diagonal matrix diag{I�, exp(� +), I�, I+}. This multiplies
det(!) by

Qn
j=k+1 exp

�
�
R
�1/2

j

�
and has no e↵ect on its vanishing. The so-obtained

matrix is 2
6664

cos
�
�⇡

4 I�
�

I+

.........
sin
�
�⇡

4 I�
�

I+. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
cos
�
 � � ⇡

4 I�
�

I+

.........
sin
�
 � � ⇡

4 I�
�

exp
�
� +

�

3
7775

+ uniformly small perturbation terms.

The explicitly given matrix consists of four n ⇥ n diagonal matrices ( ��, �+ are
included in the perturbation terms). Since

cos
�
�⇡

4
I�
�

= sin
�
�⇡

4
I�
�

=
p

2
2

I�, cos( � ⇡/4) + sin( � ⇡/4) =
p

2
2

sin ,
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it is column-equivalent to
2
6664

p
2

2 I�
I+

.......... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
cos
�
 � � ⇡

4 I�
�

I+

.........

p
2

2 sin
�
 �
�

exp
�
� +

�
� I+

3
7775

and its determinant is, up to a constant factor,

det
�
sin �

�
det
�
I+� exp(� +)

�
=

kY
j=1

sin
�Z t

a
|�j |1/2

� nY
j=k+1

�
1� exp

�
�
Z t

a
�1/2

j

��
.

(30)
In the absence of the perturbation terms, that is when A(t) itself is a diagonal
matrix, det(!) vanishes at the points tm,j where

m⇡ =
Z tm,j

a
|�j |1/2, j = 1, . . . , k, m = 1, . . . (31)

and these are all the conjugate points of a.
For the example of Section 4 the formula (30) takes the form

sin
�Z t

a
|�j |1/2

��
1� exp

�
�
Z t

a
�1/2

j

��
.

Therefore the asymptotic location of the conjugate points to a are given as tm(a) ⇡
a + m⇡/!0 as a!1.

Now we turn to the perturbed matrix !. det(!)
Qn

k+1 exp
�R
�1/2

j

�
consists of the

product (30) and other terms, each of which includes at least one factor which is a
perturbation term and which can be made arbitrarily small on [a,1). Thus,

nY
j=k+1

exp
�Z t

a
�1/2

j

�
det(!) =

kY
j=1

sin
�Z t

a
|�j |1/2

� nY
j=k+1

�
1� exp

�
�
Z t

a
�1/2

j

��

+ uniformly small perturbation terms.
(32)

This expression may be used to approximate the first conjugate point of a for large
values of a. By a suitable rearrangment of the columns of U , let

�1(1)  �2(1)  · · ·  �k(1) < 0

and define ↵ = ↵(a) as the unique value such that
Z ↵

a
|�1|1/2 = ⇡.
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For a fixed � > 0, the trigonometric product in (32) is bounded away from 0 on
[a + �,↵� �]. Consequently equation (1) has no conjugate point of a at least on an
interval whose approximate length is ↵� a.

Suppose now that �1(1) is a simple eigenvalue; that is,

�1(1) < �2(1)  · · ·  �k(1) < 0,

The trigonometric product actually changes its sign at t = ↵, so we can conclude
that (1) indeed has a conjugate point approximately at ↵. In the absence of the
perturbation terms, the solution which corresponds to this first conjugate point of
a is

U⇤|D|�1/4
�
sin
�Z t

a
|�1|1/2

�
, 0, . . . , 0

�
. (33)

When the perturbation terms are present, the solution of bvp (28) di↵ers from (33)
by O(a�µ). This may be summarized as

Theorem. Let �1(1) < 0 be the minimal eigenvalue of A at t =1 and

J(t) =
Z t

a
|�1|1/2.

Then J�1(⇡) is an asymptotic lower bound for the first conjugate point ⌘(a) of a
for large values of a. If in addition �1(1) is a simple eigenvalue, then

⌘(a) = J�1(⇡) +O(a�µ).

The above argument clarifies the relation of the most negative eigenvalue �1 with
the first conjugate point. There remains an interesting question of the role played
by the other points tmj which were defined in (31). Now the trigonometric prod-
uct

Q
sin
�R t

a |�j |1/2
�

may have arbitrarily close zeros, each of which results from
another factor (“resonance”), and a small pertubation may eliminate some of its ze-
ros. Nevertheless, since |�j |1/2 = |�j(1)|1/2 + o(1), it follows that

Q
sin
�R

|�j |1/2
�

does oscillate infinitely many times between two constant, nonzero values ±�. Con-
sequently det(!) has infinitely many zeros and there exist infinitely many conjugate
points.

The authors wish to thank the referee for his helpful remarks and for drawing
attention to reference [9].
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