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ARCHIVUM MATHEMATICUM (BRNO)Tomus 34 (1998), 393 { 399ON A CONJECTURE ABOUT ANINTEGRAL CRITERION FOR OSCILLATIONUri Elias, Anton �Skerl��kAbstract. We discuss an open question of Kiguradze and Chanturia about Prop-erty A and Property B for the equation y(n) + py = 0. The proposed integralcriterion is proved in a few cases.1. Introduction.The aim of this note is to give some partial answers to a conjecture about anintegral criterion for the oscillation of the di�erential equationy(n) + p(t)y = 0; a � t � 1; (1)with p(t) of a �xed sign.It is obvious that if p(t) � 0 then each initial value problem y(i)(t0) > 0, t0 � a,i = 0; 1; : : : ; n� 1 yields an increasing solution of (1) such thaty(i) > 0; i = 0; 1; : : : ; n; on [t0;1): (2)It is also known that if (�1)np(t) � 0 then (1) has at least one decreasing solutionon the whole domain of de�nition such that(�1)iy(i) > 0; i = 0; 1; : : : ; n; on [a;1): (3)The existence of solutions of type (2),(3) depends on nothing else but the parityof n and the sign of p(t). That is clearly not the case for the rest of the solutions.They may be oscillatory or nonoscillatory, depending on other circumstances, saythe size of p(t). This suggests, traditionally, the classi�cation of (1) according toProperty A and Property B. If p(t) � 0, (1) is said to have Property A if for evenn each of its solutions is oscillatory and for odd n either is oscillatory or satis�es(3). If p(t) � 0, we say that (1) has Property B if for odd n every solution eitheris oscillatory or satis�es (2) and for even n either is oscillatory or satis�es (2) orsatis�es (3).The following conjecture [K. p. 29, Problem 1.14] states su�cient conditionsfor Properties A and B:1991 Mathematics Subject Classi�cation : 34C10.Key words and phrases: oscillation, Property A, Property B.Received October 23, 1997.



394 U. ELIAS, A. �SKERL�IKConjecture. If p(t) � 0 andZ 1 tn�1�p(t) � Mn�tn � dt = +1 (4)where Mn� = max[0;n�1] ��(� � 1) : : : (� � n+ 1)�, then (1) has Property A.If p(t) � 0 and Z 1 tn�1�jp(t)j � M�ntn � dt = +1 (5)where M�n = max[0;n�1] �� �(� � 1) : : : (� � n+ 1)�, then (1) has Property B.The conjecture is veri�ed for n = 3 by �Skerl��k [S1,S2]. Our aim is to prove itin additional cases.The conjecture is intimately connected to the concept of (k; n� k)-disfocality.Recall that (1) is called (k; n�k)-disfocal on an interval I if no nontrivial solutionsatis�es the boundary value conditionsy(i)(�) = 0; i = 0; : : : ; k � 1;y(j)(�) = 0; j = k; : : : ; n� 1 (6)for any �; � 2 I, � < �. It is known that (1) is (k; n� k)-disfocal on I if and onlyif it has a solution y such thaty(i) > 0; i = 0; : : : ; k � 1;(�1)j�ky(j) > 0; j = k; : : : ; n� 1 (7)on I. We say that (1) is eventually (k; n� k)-disfocal if it is (k; n� k)-disfocal onsome (c;1).On the other hand, it is also known that every nonoscillatory solution of (1)on (a;1) satis�es inequalities (7) for some k and on some subinterval (c;1). Ofcourse, the parity of k in (7) must be compatible with the sign of p(t), namely(�1)n�kp(t) � 0: (8)Thus, (7) links nonoscillation with various types of disfocality.After these introductory notes we are ready to return to the conjecture. Asmentioned above, every nonoscillatory solution eventually satis�es some inequality(7), which in turn is related to a certain type (k; n�k)-disfocality. Thus it is clearthat (1) has Property A (Property B) if and only if it is not eventually (k; n� k)-disfocal for any k, 1 � k � n� 1, (�1)n�kp � 0. Our approach is, consequently,to break up Properties A, B to their components of disfocality and treat each ofthem separately. We prefer to restate the conjecture in a more detailed form:



AN INTEGRAL CRITERION FOR OSCILLATION 395Conjecture. If (�1)n�kp(t) � 0 andZ 1 tn�1�jp(t)j � Mk;ntn � dt = +1 (9)where Mk;n = max[k�1;k] j�(� � 1) : : : (� � n+ 1)j;then (1) cannot be (k; n� k)-disfocal on any (c;1).If we maximize the left hand size of (9) for the values of k which satisfy the paritycondition (8), we get either case (4) or (5) of the original conjecture, dependingon the sign of p. Recall that if (1) is (k; n�k)-disfocal, it is also (k�2; n�k+2)-disfocal if k � (n + 1)=2 and it is (k + 2; n� k � 2)-disfocal if k � (n � 1)=2 [E,Theorem 7.12].(9) measures the distance from equation (1) to the Euler equationy(n) + �tny = 0; 1 � t <1: (10)Equation (10) with (�1)n�k� < 0 is eventually (k; n� k)-disfocal if and only if0 � (�1)n�k�1� �Mk;n: (11)It is well known that (11) implies the existence of a solution y = t� of type (7) andthus it is su�cient for the (k; n� k)-disfocality of (10) on (0;1). The necessity of(11) for eventual (k; n�k)-disfocality is not trivial and it is proved in [E, Theorem6.24]. Another related result is that (1) is eventually (k; n� k)-disfocal even if0 � (�1)n�k�1p(t) � Mk;ntn + O� 1tn+" �; " > 0;[E, Lemma 6.26].Note that in the study of the conjecture we have to consider only the caseR1 tn�1jpj dt =1, since otherwise, if R1 tn�1jpj dt < 1, the solutions of (1) areasymptotic to those of y(n) = 0, and are automatically nonoscillatory.2. We shall adopt the method of [S1, S2] to prove additional cases of the conjecture.Proposition. The conjecture holds for n = 2, n = 3, p > 0, n = 3, p < 0, n = 4,p < 0.Proof. Suppose that (1) is (k; n � k)-disfocal, say for simplicity, on [0;1), forsome k, 1 � k � n � 1, which obeys (8). Then it has a solution y which satis�esinequalities (7) on (0;1). Moreover, y may be taken so that it also satis�es theboundary conditions y(i)(0) = 0; i = 0; : : : ; k� 1: (12)



396 U. ELIAS, A. �SKERL�IKWe need the following facts:(i) If a function y(t) satis�es y(i) > 0, i = 0; : : : ; k, y(k+1) < 0, on (0;1), thenytk=k! � y0tk�1=(k � 1)! :(ii) If, in addition, y(t) satis�es (12), then alsoytk�1=(k � 1)! � y0tk�2=(k � 2)! :Part (i) is the lemma of Kiguradze. (ii) is proved in [E, Corollary 6.15]. Thus,our solution y satis�es k � 1 � t y0y � k; a < t <1: (13)(a) Let us summarize �Skerl��k's proof for (1) with n = 3, p � 0, slightly modi�ed.([S1] discusses, in fact, the more general equation y000+py0+ qy = 0). Due to (13),let z(t) = ty0y :Then z0 = y0y + t�y00y � y02y2 � = t y00y + 1t (z � z2): (14)Next, (tz0)0 = ddt�t2 y00y + z � z2�= t2�y000y � y00y0y2 � + 2ty00y + ddt(z � z2)= t2 y000y + �ty00y ��� t y0y + 2�+ ddt (z � z2)which is by (14) = t2 y000y + �dzdt + z(z � 1)t �(�z + 2) + ddt (z � z2)and with dzdt (�z + 2) = ddt (�12z2 + 2z),= t2 y000y � z(z � 1)(z � 2)t + ddt (3z � 32z2): (15)Suppose that y000 + py = 0, p > 0, is (2,1)-disfocal on [0;1) and nevertheless(9) holds with n = 3, k = 2. Take the solution y of (1) which satis�es (7),(12) andthe corresponding function z(t). Then by (13), 1 � z � 2,0 � �z(z � 1)(z � 2) � max[1;2] j�(� � 1)(� � 2)j = M2;3 = 23p3 ;



AN INTEGRAL CRITERION FOR OSCILLATION 397and, of course, y000=y = �p. (15) becomes(tz0)0 � �t2p+ M2;3t + ddt(3z � 32z2);tz0���t1 � Z t1 s2h� p(s) + M2;3s3 i ds+ (3z � 32z2)���t1:It follows from assumption (9) and the bounds 1 � z � 2, thattz0 � c1 � Z t1 s2hp(s) � M2;3s3 i ds!�1;and tz0 � c2 < 0 for su�ciently large values of t. Another integration of z0 � c2=tleads to z(t) � c3 + c2 ln(t)!�1, contradicting z � 1.(b) This proof �ts also to n = 3, p � 0 with minor modi�cations. Suppose thaty000 + py = 0, p < 0, is (1,2)-disfocal while (9) holds with n = 3, k = 1. Nowy; y0 > 0; y00 < 0; y000 > 0 and 0 � z � 1,0 � z(z � 1)(z � 2) � max[0;1] j�(�� 1)(�� 2)j = M1;3 = 23p3 ;and (15) becomes (tz0)0 � t2jp(t)j � M1;3t + ddt(3z � 32z2):As above, tz0 � c1 + Z t1 s2hjp(s)j � M2;3s3 ids! +1;and the next integration yields a contradiction with z � 1.(c) The same argument easily settles the conjecture for n = 2, p > 0. If y00+py = 0,p > 0, is (1,1)-disfocal then y; y0 > 0, y00 < 0 and 0 � z � 1. (14) becomesz0 � �tp(t)+M1;2=t, with M1;2 = max[0;1] z(1� z) = 1=4. If (9) holds with n = 2,k = 1, then z(t) � z(1) � � Z t1 shp(s) � M1;2s2 ids!�1;contradicting the boundedness of z(t).(d) Now we turn to n = 4. Di�erentiating (15)(t(tz0)0)0 = ddt�t3 y000y � z(z � 1)(z � 2) + t ddt (3z � 32z2)�= t3�yivy � y000y0y2 �+ 3t2 y000y + ddtz(z � 1)(z � 2) + ddt�t ddt (3z � 32z2)�= t3 yivy + �3� t y0y ��t2 y000y �+ ddtP1(z) + ddt�t ddtP2(z)�



398 U. ELIAS, A. �SKERL�IKAgain by (15)= t3 yivy +(3�z)�(tz0)0+ z(z � 1)(z � 2)t � ddt(3z� 32z2)�+ ddtP1(z)+ ddt�t ddtP2(z)�where P1(z); P2(z) are polynomials. But(3� z) ddt (3z � 32z2) = ddtP3(z);(3� z)(tz0)0 = ddt�t(3� z)dzdt � + tz02 = ddt�t ddt (3z � 32z2)� + tz02;so(t(tz0)0)0 = t3 yivy � z(z � 1)(z � 2)(z � 3)t + ddtP4(z)+ ddt�t ddtP5(z)�+ tz02: (16)Suppose that the fourth order equation yiv + py = 0, p < 0 is (2,2)-disfocal.Then 1 � z � 2,0 � z(z � 1)(z � 2)(z � 3) � max[1;2] j�(�� 1)(�� 2)(�� 3)j =M2;4 = 916 ;and (16) becomes(t(tz0)0)0 � �t3p(t) � M2;4t + ddtP4(z) + ddt�t ddtP5(z)�:After an integration it follows from the boundedness of z thatt(tz0)0 � c+ t ddtP5(z) + Z t1 s3�jp(s)j � M2;4s4 ids:If the last integral diverges to +1 then for arbitrary K1 > 0,(tz0)0 � K1t + ddtP5(z); t � t0:Two more integrations lead to the conclusion that z(t)! +1 as t!1, contra-dicting z � 2.Analogous proofs are available if (tz0)0; (t(tz0)0)0 are replaced by (tz)00; (t2z)000,respectively. �The conjecture could have been proved for n = 4, p > 0, i.e., k = 1 or k = 3, ifwe could show that R1 tz02 dt <1. Once this is done, all one needs is to estimate(16) from above and reverse the last inequalities in the previous proof.Inequality (13) gives way to hope that the same method may be generalized toother values of n; k. Unfortunately, we did not succeed to analyze similarly theidentities (t(t : : : (tz0)0 : : : )0)0 = tn�1 y(n)y � z(z � 1) : : : (z � n+ 1)t + : : :or (tn�2z)(n�1) = tn�1 y(n)y � z(z � 1) : : : (z � n+ 1)t + : : : ;where the omitted terms all vanish when z = const.
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