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INTEGRAL MEANS AND PÓLYA FACTORIZATIONS

URI ELIAS

(Communicated by Hal L. Smith)

Abstract. Integral means of functions and their derivatives are studied. We
find a relation between integral means and the Pólya factorization of ordinary
linear differential operators.

The purpose of this note is to present relations between integral means of func-
tions and the corresponding integral means of their derivatives. Also, we point
out that these relations are consequences of the Pólya factorization of differential
operators.

We begin with two identities:

Theorem 1. Let there be given the integral mean with weight function w0 > 0,

F (t) =

∫ t

a
w0(s)f(s) ds∫ t

a
w0(s) ds

.(1)

(a) If w1 =
∫ t

a
w0, then the generalized k-th derivatives Lkf =

(
w1

w0

d
dt

)k
f have

the integral means

LkF (t) =

∫ t

a
w0(s)Lkf(s) ds∫ t

a
w0(s) ds

, k = 1, 2, . . . .(2)

(b) Let wk =
∫ t

a
wk−1, rk = w2

k/wk−1wk+1, k = 1, 2, . . . . Then the integral
mean with weight wk satisfies

rk
d

dt
rk−1

d

dt
. . . r1

d

dt
F (t) =

∫ t

a
wk(s)f

(k)(s) ds∫ t

a wk(s) ds
, k = 1, 2, . . . .(3)

Proof. By (1), F (t) =
∫ t

a
w0(s)f(s) ds/w1(t), with w1(t) =

∫ t

a
w0. By differentia-

tion and then integration by parts (with w1(a) = 0),

F ′ = w−2
1

[
w0fw1 − w0

∫ t

a

w0f
]

= w−2
1

[
w0fw1 − w0

(
w1f −

∫ t

a

w1f
′
)]

=w−2
1 w0

∫ t

a

w1f
′.
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This may be written as

w1

w0
F ′ =

1

w1

∫ t

a

w1f
′ =

1

w1

∫ t

a

w0

(w1

w0
f ′
)
,(4)

which is precisely (2) with k = 1, L1 = w1

w0

d
dt . Induction on k completes the proof

of (2).

Let us multiply (4) by w1/w2, where w2 =
∫ t

a w1, and rewrite it as

w2
1

w0w2
F ′(t) =

∫ t

a
w1(s)f

′(s) ds∫ t

a
w1(s) ds

.

When this argument is repeated k times with w`+1 =
∫ t

0 w`, ` = 1, 2, . . . , k, (3)
follows.

Take for example the weight function w0(t) = tp, p > −1, and a = 0. Then
one has wk = tp+k/(p + 1) . . . (p + k), w1/w0 = t/(p + 1), rk = w2

k/wk−1wk+1 =
(p+ k + 1)/(p+ k). If

F (t) =

∫ t

0
spf(s) ds∫ t

0
sp ds

,(5)

then (2) becomes

(t
d

dt
)kF (t) =

∫ t

0 s
p(s d

ds )
kf(s) ds∫ t

0
sp ds

, k = 1, 2, . . . ,(6)

and (3) becomes

p+ k + 1

p+ 1
F (k)(t) =

∫ t

0 s
p+kf (k)(s) ds∫ t

0 s
p+k ds

, k = 1, 2, . . . .(7)

(7) yields easily

tkF (k)(t) =

∫ t

0
sp+kf (k)(s) ds∫ t

0
sp ds

, k = 1, 2, . . . .(8)

Since
(
t ddt

)n
= tn dn

dtn +
∑n−1

1 cit
i di

dti with certain constants ci, one can deduce (8)
also from (6).

Many other identities about integral means are available. For example, if we
transform (5) and (6) by s = u−1, s d

ds = −u d
du , we get that for q > 1, v > 0,

F (v) =

∫∞
v

u−qf(u) du∫∞
v u−q du

implies (v
d

dv
)kF (v) =

∫∞
v

u−q(u d
du )kf(u) du∫∞

v u−q du
,

k = 1, 2, . . . . If we choose a = ∞, w0 = e−pt, wk =
∫∞
t

wk−1 = e−pt/pk, then by
(3), rk = 1 and

F (t) =

∫∞
t e−psf(s) ds∫∞

t
e−ps ds

implies F (k)(t) =

∫∞
t e−psf (k)(s) ds∫∞

t
e−ps ds

.
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Corollary 1. Let w0 = tp as in (5).
(a) If f (k) has a fixed sign for t ≥ 0, then F (k) has the same fixed sign as well.
(b) If f, f ′, . . . f (`) ≥ 0 for t ≥ 0, then

F (k)(t) ≤ p+ 1

p+ k + 1
f (k)(t), t ≥ 0, k = 0, . . . , `− 1.(9)

(c) If f, f ′, . . . f (`) ≥ 0, f (`+1) ≤ 0, then

0 ≤ p+ 1

p+ `+ 1
f (k)(t) ≤ F (k)(t), t ≥ 0, k = 0, . . . , `.(10)

Proof. (a) is a consequence of (7). By (7) also

tp+k+1

p+ 1
F (k)(t) =

∫ t

0

sp+kf (k)(s) ds

=
tp+k+1

p+ k + 1
f (k)(t)−

∫ t

0

sp+k+1

p+ k + 1
f (k+1)(s) ds,

(11)

and the upper bound (9) follows for k + 1 ≤ `.
If f (`+1) ≤ 0, then by (11) (with k = `)

F (`)(t) ≥ p+ 1

p+ `+ 1
f (`)(t), t ≥ 0,

which is (10) for k = `. Integration yields

F (`−1)(t)− p+ 1

p+ `+ 1
f (`−1)(t) ≥ F (`−1)(0)− p + 1

p+ `+ 1
f (`−1)(0), t ≥ 0.(12)

But by (7), F (k)(0) =
(
(p+ 1)/(p+ k + 1)

)
f (k)(0) for k = 1, 2, . . . . Using this with

k = `− 1, (12) becomes

F (`−1)(t)− p + 1

p+ `+ 1
f (`−1)(t) ≥

(p+ 1

p + `
− p + 1

p + `+ 1

)
f (`−1)(0) ≥ 0

for t ≥ 0. Thus we get the lower bound (10) for k = ` − 1. Repeated integrations
of the last inequality prove (10) for k = `− 2, . . . , 1, 0.

Corollary 1 shows how convexity properties are inherited by averaging. About

the convexity of F (t) = t−1
∫ t

0
f(s) ds, see [Mit, §1.4.7] and references there. Part

(a) of Corollary 1 also implies, for example,

Corollary 2. Let f be completely monotone, that is, (−1)nf (n) ≥ 0, n = 0, 1, . . . .
Then the average F in (5) is completely monotone, too. If f is completely convex,
i.e. (−1)nf (2n) ≥ 0, n = 0, 1, . . . , then F of (5) is also completely convex.

The integral identities (2),(3) may also be written as differential identities. For
example, (1) and (2) are equivalent, respectively, to

d

dt
(w1F ) = w0f and

d

dt
(w1LkF ) = w0Lkf.

If we substitute f = w−1
0

d
dt (w1F ) from the first equation into the second one, we

get

d

dt
(w1LkF ) = w0Lk(w

−1
0

d

dt
w1F ).
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However, Lk is the differential operator
(
w1

w0

d
dt

)k
, so each side of the last equation

may be presented as a product of differential operators

1

w0

d

dt

(
w1

(w1

w0

d

dt

)k
F
)
≡
(w1

w0

d

dt

)k( 1

w0

d

dt
w1F

)
.(13)

Similarly, (1) and (3) are equivalent, respectively, to

d

dt
(w1F ) = w0f and

d

dt
wk+1

w2
k

wk−1wk+1

d

dt
. . .

w2
1

w0w2

d

dt
F = wk

dk

dtk
f,

which imply, as above, the differential operator identity

1

wk

d

dt

w2
k

wk−1

d

dt

w2
k−1

wk−2wk
. . .

w2
1

w0w2

d

dt
F ≡ dk

dtk

( 1

w0

d

dt
w1F

)
, wi =

∫
wi−1.(14)

(13) represents two different Pólya factorizations of the same differential opera-
tor, say

αk+1
d

dt
αk . . . α1

d

dt
α0F ≡ βk+1

d

dt
βk . . . β1

d

dt
β0F, αi, βi > 0.(15)

The same holds for (14). For more details about such factorizations, see [Pol], [Tre],
[Cop]. One way to verify such identities is to show that the (k + 1)st order linear
differential operators on both sides have the same leading coefficient αk+1 . . . α0 =
βk+1 . . . β0 and the same null space. For example, for (13) it follows by direct
calculation (and using repeatedly w0 = w1

′) that the null spaces of both sides
are spanned by the k + 1 functions

{
w−1

1 , 1, logw1, (logw1)
2, . . . , (logw1)

k−1
}

and

αk+1 . . . α0 = βk+1 . . . β0 = (w1/w0)
k+1.

Now we turn to the inverse question, namely are any two factorizations like (15)
of a differential operator a source of integral mean identities like (2) and (3)? If
(15) is factored into products of differential operators

1

v0

d

dt

(
v1Nk[F ]

) ≡Mk

( 1

w0

d

dt
(w1[F ])

)
,(16)

where Mk, Nk are kth order differential operators and v−1
0

d
dtv1, w

−1
0

d
dtw1 are first

order differential operators, v1 =
∫
v0, w1 =

∫
w0, then

F (t) =

∫
w0f∫
w0

implies Nk[F ](t) =

∫
v0 Mk[f ]∫

v0
.

(15) can be always written as (16) in a trivial way. All one has to do is to multiply
(15) from the right and the left hand sides by suitable factors and split αk, β1 into
products. This is, of course, useless, since multiplying, say, v0 by a positive function
leads to multiplication of Mk by the reciprocal of the same function. So, the real
question is to obtain interesting factorizations (16) with “nice” operators Mk, Nk.
We exhibit such a result, based on the identity

t−n+1
( d

dt

)
tn
( d

dt

)2n−1

F ≡
( d

dt

)2n−1

tn
( d

dt

)
t−n+1F.(17)

(17) is easily established, since both sides are equal to tF (2n) + nF (2n−1).
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Theorem 2. Let f ∈ C2n−1[0,∞), tnf ∈ L(t0,∞) and f (n−1)(0) = 0. If

F (t) =

∫∞
t s−nf(s) ds∫∞

t s−n ds
, 0 ≤ t <∞,(18)

then

n

n− 1
F (2n−1)(t) =

∫ t

0
sn−1f (2n−1)(s) ds∫ t

0
sn−1 ds

.(19)

Proof. Let F (t) be defined by (18), that is, t−n+1F (t)/(n− 1) =
∫∞
t

s−nf(s) ds, or

(n− 1)f(t) = tn
d

dt

(
t−n+1F (t)

)
.(20)

We differentiate (20) 2n− 1 times and get by the identity (17) that

(n− 1)f (2n−1) =
d2n−1

dt2n−1
tn

d

dt

(
t−n+1F

)
= t−n+1 d

dt

(
tnF (2n−1)

)
,

or

tnF (2n−1)
∣∣∣t
0

= (n− 1)

∫ t

0

sn−1f (2n−1) ds.(21)

The lower limit has to be calculated carefully due to the definition of F at t = 0.
To determine the behaviour of F and its derivatives near t = 0, we differentiate
(20) n− 1 times,

(n− 1)f (n−1) =
(
tn(t−n+1F )′

)(n−1)
=
(
tF ′ + (−n + 1)F

)(n−1)
= tF (n),

i.e., F (n) = (n−1)f (n−1)(t)t−1. By n−1 more differentiations and passing to limit
as t → 0, it follows that tnF (2n−1)

∣∣
0

= (−1)n(n − 1)(n − 1)!f (n−1)(0), and this

equals 0 due to our assumption. Thus (21) becomes

tnF (2n−1)(t) = (n− 1)

∫ t

0

sn−1f (2n−1) ds,

which is precisely (19).

Beginning with the identity

t−n+1 d

dt
tn+1

( d

dt

)n
≡
( d

dt

)n
tn+1 d

dt
t−n+1,

it can be shown that (18) implies

n

n− 1
tF (n)(t) =

∫ t

0 s
n−1(sf(s))(n) ds∫ t

0 s
n−1 ds

.
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