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An asymptotic approximation is obtained for solutions of a matrix differential
equation with symmetric matrix coefficient, analytic on the real line. Our contribu-
tion consists of an asymptotic approximation that is valid even for various singulari-
ties near infinity. Q 1999 Academic Press

1. INTRODUCTION

This work considers the matrix differential equation

Y Y s A t Y , 1.1Ž . Ž .

Ž .where A t is a hermitian, n = n matrix function, invertible and analytic
Ž .on a, ` .

For the analogous scalar equation,

yY s a t y , 1.2Ž . Ž .

Ž .there exists under suitable assumptions the Liouville]Green L-G, WKB
y1r4 Ž 1r2 .approximation y f a exp "Ha . Improvements to the L-G approxi-

w xmations were sought in numerous works 1, 3, 15, 16 . An improvement of
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the L-G formula that holds in more general situations is

X 2a
y1r4y f a exp " a q . 1.3Ž .(H ž /ž /4a

w xThe above approximations were derived by Hartman and Wintner 11 ,
w Ž .xwho proved their local validity as t ª q`, for the case where RRe a t

Ž .stays bounded away from 0. However, the validity of 1.3 in the case where
Ž .t s ` is a singular regular point or a singular irregular point with a t pure

imaginary was not examined. Exceptional features of approximations for
Žsolutions and their derivatives, employing the unique combination a q

Ž X .2 .1r2 w xa r4a were derived and proved in 6]8 . The approximations were
shown to be independent of the type and location of singularities, namely
valid in a half-neighborhood of a singular regular or a singular irregular
point, whether finite or not. The only exclusion is the singular regular case,

wwhich involves a logarithmic solution. Moreover, it was shown in 7,
xExample 5.7, and 8, 10 that the approximations derived there, when

winterpreted appropriately, are also valid at a turning point. Consult, e.g., 1,
x15, 16, 19 for the significance of turning points.

Ž . w xL-G approximations for matrix differential Eq. 1.1 were studied in 17
Ž . w xsee also references there . A similar problem was approached in 18 in

U w xthe context of C -algebras. A paper by Edelstein 4 contains results
Ž .concerning asymptotic approximations for solutions of 1.1 in a Banach

space. In this case the exponential terms in the L-G approximation are
replaced by evolutionary operators of the problem durdt s "A1r2 u.

w x Ž .In 5 , we developed an asymptotic formula for the matrix system 1.1
that is a matrix analog of the Liouville]Green approximation, under the

Ž .assumption that the matrix A t is invertible and analytic at the point
t s `. However, it should come as no surprise that the range of validity of
the asymptotic formula developed there does not include the cases where
t s ` is a singular regular point or a so-called turning point, normally a
point where an eigenvalue vanishes. This is so since the Liouville]Green

Ž .approximation also fails in the analogous cases for the scalar 1.2 .
In this work we intend to obtain approximate solutions of the matrix

Ž . Ž .equation 1.1 in the spirit of 1.3 . Our contribution consists of an
asymptotic approximation that is valid even for various singularities at

r ˜Ž . Ž .t s `. It will cover, for example, cases where A t s t A t , r is any real
Ž̃ .number, and A t is a hermitian, analytic matrix function on the real line

Ž̃ .near t s `, and A ` is invertible. Other cases that are covered are such
Ž .that A t is not invertible at t s ` and is possibly meromorphic there.

Note that analyticity is a convenient working assumption in this work.
However, it is used only to estimate functions and their derivatives near



ASYMPTOTIC APPROXIMATION 99

infinity, and it could have easily been replaced by other sets of assump-
tions. To keep our arguments short, this will not be done here.

Most of the results that are mentioned above are local approximations,
w xi.e., they are valid on some neighborhood of t s `. In 7, 10 it was shown

Ž .for the scalar equation 1.2 how to derive global approximations valid on
an entire interval, one end of which is a turning point for the equation
while the other end point could be a singular point. This is done without
utilization of special or transcendental functions. In this paper we focus

Ž .only on local approximations for 1.1 . Nevertheless, a refined analysis
should show, as in the scalar case, that global approximations could be

Ž .derived for solutions of 1.1 .

2. LINEAR TRANSFORMATIONS

Ž .We rewrite the second-order n = n matrix differential equation 1.1 as
a first-order 2n = 2n system,

0 I YXZ s Z, Z s . 2.1Ž .Xž / ž /A 0 Y

Ž . Ž . UThe hermitian A t may be diagonalized by a unitary matrix U t , UU s I,

Uy1AU s D t s diag l t , . . . , l t . 2.2� 4Ž . Ž . Ž . Ž .1 n

w x Ž .According to Rellich’s theorem 13 , the unitary U t may be taken to be
Ž . Ž . Ž .analytic in t, and l t , . . . , l t are the real, analytic eigenvalues of A t .1 n

Ž . Ž . Ž .By the invertibility of A t , l t / 0 on a, ` , j s 1, . . . , n.j
Ž .A natural initial step is to simplify 2.1 by some linear transformation

Z s TZ . One convenient choice is to take1

Ay1r4 Ay1r4 U 0T s
1r4 1r4 ž /ž / 0 UA yA

Dy1r4 0U 0 I Is ,
1r4ž / ž /ž /0 U I yI0 D

2.3Ž .

1 1r4 UD 0I I U 0y1T s .Uy1r4ž / ž /ž /I yI 0 U2 0 D

Ž .It is easily verified by straightforward calculation that this takes 2.1 into

1r2D 0X Xy1Z s y T T Z . 2.4Ž .1 11r2ž /0 yD
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w x Ž .In 5 this transformation was applied under the assumption that A t is
analytic and invertible at t s `, and so T is analytic there. Consequently

X Ž y2 . y1 XT s OO t , and T T was considered as a ‘‘small perturbation’’ of the
dominant diagonal matrix. In the present work, on the other hand, we shall

Ž .analyze 2.3 further to obtain an approximation that is also valid in
Ž .singular cases. By 2.3 ,

1 Xy5r4y D D 04U 0 I IXT s X1 y3r4ž / ž /0 U I yIž /0 D D4

X Dy1r4 0U 0 I Iq ;X 1r4ž / ž /ž /0 U I yI0 D

hence

0 Dy1DX
X 1y1yT T s q L,4 Xy1ž /D D 0

where

D1r4UUU XDy1r4 0I I I I1L s . 2.5Ž .2 XUy1r4 1r4ž / ž /ž /I yI I yI0 D U U D

So finally,

X11r2 y1D D D4XZ s q L Z . 2.6Ž .1 1X1 y1 1r2ž /D D yD4

Ž .If A t is not analytic at t s `, the diagonal terms are not necessarily
the dominant ones. For example, at a singular-regular point at infinity,
Ž . y2 yi y2 1r2 X y1A t s t ÝA t , we have l f t and l , l r4l f t are compara-i j j j j

Ž X . 1r2ble. Similarly, any ratio l r4l rl is available at a suitably chosenj j j
singularity. To handle a case as general as possible, we shall try to simplify
the whole leading matrix by additional linear transformations. The first
matrix coefficient consists of four diagonal blocks:

.
X1r2 .l l r4l1 1 1.

. ... ... ..
X.1r2l l r4l.n n n. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .

X . 1r2l r4l yl.1 1 1.. ... .. ..
.X 1r2l r4l yl.n n n.
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Let P be the 2n = 2n permutation matrix that, by multiplication from the
right, places the ith column at the 2 i y 1th place and the n q ith column
at the 2 ith one, i s 1, . . . , n. The transformation Z s PZ rearranges the1 2

Ž .four n = n blocks of 2.6 into a direct sum of 2 = 2 blocks and takes the
Ž .whole Eq. 2.6 into

X1r2l l r4lj j jX y1Z s [ q P LP Z . 2.7Ž .2 2X 1r2ž /l r4l ylj j j

The direct sum of blocks may be diagonalized again by a matrix V of a
similar block structure, and so the calculation is effectively reduced into
one of a single 2 = 2 block. Its eigenvalues are

2Xl j
"m t s " l q .Ž .j j) ž /4l j

Note that while l , lX are real valued, m may be real valued or a purej j j
Ž .imaginary function. The eigenvectors that correspond to "m t may bej

taken, up to scalar factors, as

1r2 Xyl r4l2X j j1r2l q l q l r4lŽ .ž /j j j j and ,1r22XX 1r2l q l q l r4l� 0 � 0Ž .l r4l ž /j j j jj j

Ž .1r2respectively, where always denotes the same branch. Now we intro-
Ž . X 3r2duce some convenient normalization. Let us put ll t s l r4l . Divid-j jj

ing by l1r2 takes the eigenvectors intoj

2 yll j1 q 1 q ll' j
and , 2.8Ž .21 q 1 q ll'� 0 � 0ll jj

and if we normalize them to be unit vectors, some algebraic manipulations
yield a diagonalizing block

1r2 1r2¡ ¦1 1
1 q y 1 y

2 2ž / ž /1 q ll 1 q ll' 'j jg yh 1j j
s ,

1r2 1r2h g 'ž / 2j j 1 1
1 y 1 q

2 2ž / ž /1 q ll 1 q ll¢ §' 'j j
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2 2 Ž .where g q h ' 1 with complex valued g , h , ll t . Since l is realj j j j jj
valued, ll is restricted either to the real axis or to the imaginary one.j

ŽTo make the above formulas well defined, we shall choose 1 y 1r
2 1r2' '.1 q ll s llr 2 q ??? qnear ll s 0 and 1 y 1r2 ll q ??? near infin-

ity, and a similar choice for the other terms. Thus no problem of multival-
ued functions is encountered. The corresponding diagonalizing matrix V is
of the form

g yhj j
V s [ .

h gž /j j

1 2 1r2 1r2'Ž . Ž .Ž Ž . .By the identity sin z s 1r 2 1 y 1r 1 q tan z , the blocks2

are precisely

1 1cos arctan ll ysin arctan llŽ . Ž .2 2j j
, 2.9Ž .

1 1� 0sin arctan ll cos arctan llŽ . Ž .2 2j j

1Ž .a rotation by the complex angle arctan ll .2 j
Ž .The vectors in 2.8 are linearly independent, and the other considera-

tions are valid, provided that 1 q ll 2 / 0, that is,j

lX 2
j

1 q / 0 2.10Ž .316l j

Ž . 2on a, ` . Since 1 q ll is real valued and nonzero, it is either positive onj
Ž . Ž . Ž .all a, ` or negative there. As l t is also real and nonzero on a, ` ,j

2Ž . Ž .2.10 implies that m s l 1 q ll / 0 on a, ` , and it is either real' ž /j j j

Ž .valued on the whole a, ` or pure imaginary there.
Ž .V is analytic at every point where the ll t ’s are analytic or meromor-j

Ž . Xphic and assumption 2.10 holds. At the singular end point t s `, l , lj j
Ž .may vanish. However, if we assume that 2.10 also holds at t s `, then

Ž .V t will be bounded and analytic at t s `, too.
Ž .By the change of variables Z s VZ , the first matrix in 2.7 is diago-2 3

nalized, and our equation becomes

m 0jX Xy1 y1 y1Z s [ q V P LPV y V V Z . 2.11Ž .3 30 ymž /j
Ž .It follows by direct differentiation of 2.9 that

X 0 y1X 1y1V V s [ arctan ll . 2.12Ž .Ž .2 j ž /1 0
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In this identity there is no essential difference whether the functions ll j
Ž .X Ž y1 .Xare analytic or meromorphic, since arctan ll s y arctan ll .

It is known that under suitable ‘‘smallness conditions’’ on the terms
y1 y1 y1 X Ž .V P LPV, V V , the solutions of Eq. 2.11 have an asymptotic approx-

imation

exp m 0H j

Z s I q R t [ C ,Ž .Ž .3 2 n

0 exp y m� 0H j

Ž . Ž .where R t is a 2n = 2n continuous matrix function such that R ` s 0.
w xSeveral smallness conditions are summarized in 3 . The solutions of the

Ž .corresponding Eq. 2.1 may be represented as

exp m 0H j

Z s T t PV t I q R t [ C.Ž . Ž . Ž .Ž .2 n

0 exp y m� 0H j

Let us rewrite this as

Z s T t PV t Py1 P I q R t Py1Ž . Ž . Ž .Ž .Ž . Ž .2 n

exp m 0H j
y1= P [ P PC.

0 exp y m� 0� 0H j

Each application of the inverse permutation matrix Py1 rearranges the n2

2 = 2 blocks back into four n = n blocks. Thus
.
.1 1diag cos arctan ll diag ysin arctan ll.Ž . Ž .½ 5 ½ 52 2j j.y1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .PVP s ,.

1 1.� 0diag sin arctan ll diag cos arctan llŽ . Ž .½ 5 ½ 52 2.j j.

exp m 0H j
y1P [ P

0 exp y m� 0H j

s diag exp m , exp m , . . . , exp y m , . . . ,H H H1 2 1½ 5
..˜ ˜I q R R.n 11 12y1 . . . . . . . . . . . . . . .˜ .P I q R P s I q R s .Ž .2 n 2 n .� 0˜ ˜R I q R.21 n 22.
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� 4 � 4If we put, for short, ll s diag ll , m s diag m , thenjj
.

1 1.cos arctan ll y sin arctan llž / ž /y1r4 y1r4 2 2.UD UD . . . . . . . . . . . . . . . . . . . . . . . . . . . ..Z s
1r4 1r4ž / .1 1UD yUD � 0sin arctan ll cos arctan ll.ž / ž /2 2.

.

.

.˜ ˜I q R exp m R exp y mŽ . H Hn 11 12.

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .= K . 2.13Ž ..

.˜ ˜.� 0R exp m I q R exp y mŽ .H H21 n 22.

.
Ž .For the solution Y of 1.1 we get the approximation

p
1y1r4 ˜Y t s UD sin arctan ll q I I q RŽ . Ž .n n 112ž /4

p
1 ˜ysin arctan ll y I Rn 212ž /4

= diag exp m , . . . KH 1 1½ 5
p

1y1r4 ˜q UD ysin arctan ll y I Rn 122ž /4
p

1 ˜qsin arctan ll q I I q RŽ .n n 222ž /4

= diag exp y m , . . . K 2.14Ž .H 1 2½ 5
and another approximation for Y X. It is worth mentioning that in the

1Ž .interior of a, ` where l / 0, ll is finite. Consequently, arctan ll /j 2j j
Ž ."pr4, and the corresponding diagonal matrices in 2.14 are invertible.

Ž . Ž .For n s 1, 2.14 reduces to the solutions of the scalar Eq. 1.2 , which
Ž . Ž . w xare equivalent to 6.1 , 6.2 of 8 :

1r2 1r2
1 1

y s 1 q r 1 y q 1 qŽ .1 11 2 2ž / ž /ž /' '1 q ll 1 q ll

1r2 1r2
1 1

qr 1 y y 1 q21 2 2ž / ž /ž /' '1 q ll 1 q ll

2Xy1r4 '= a exp a q a r4a ,Ž .Hž /
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1r2 1r2
1 1

y s r 1 y q 1 q q 1 q rŽ .2 12 222 2ž / ž /ž /' '1 q ll 1 q ll

1r2 1r2
1 1

= 1 y y 1 q
2 2ž / ž /ž /' '1 q ll 1 q ll

2Xy1r4 '= a exp y a q a r4a ,Ž .Hž /
with ll s aXr4 a3r2.

3. ASYMPTOTIC APPROXIMATIONS

The formal asymptotic approximations that are suggested above will be
Ž .justified if the perturbation terms in the reduced equation 2.11 are small

in some sense. One simple result in this direction is the following modifica-
w xtion of Levinson’s theorem 3, Theorem 1.3.1 : Let the diagonal matrix

Ž . � Ž . Ž .4L t s diag m t , . . . , m t satisfy the dichotomy condition that for each1 n
x � Ž .pair of integers i, j and for all x, t such that a F t F x - `, H RRe m s yt i

Ž .4m s ds is either bounded from above or is bounded from below. If thej
Ž . ` < Ž . < XŽ .matrix C t satisfies H C s ds - `, then, as t ª `, the system W t sa

Ž Ž . Ž .. Ž .L t q C t W t has a solution with the asymptotic form

t
W t s I q o 1 diag exp m s ds, . . . .Ž . Ž . Ž .Ž . H 1½ 5

a

w xA simple result is mentioned in 2, p. 88 , where the dichotomy condition is
� Ž .replaced by a stronger one, namely, that none of the differences RRe m si

Ž .4y m s change sign.j

Ž .We shall try to apply this version of Levinson’s theorem for 2.11 and
show that the perturbation terms Vy1Py1LPV, Vy1V X are integrable near
infinity. This may be verified under various assumptions on the singular

Ž .behavior of A t at infinity.
Let us assume that

h ˜A t s t A t ,Ž . Ž .

where h is an arbitrary real number, and the hermitian matrix function
Ž̃ . Ž .A t is analytic and invertible on a, ` but possibly meromorphic and not

Ž̃ .necessarily invertible at t s `. Since the terms of A t are meromorphic
hqp ˆŽ . Ž .at t s `, we can write A t s t A t , with a suitable positive integer p

ˆ ˆŽ . Ž .and A t analytic at t s `. The eigenvalues of the hermitian A t are
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pj ˆ Ž .analytic at t s ` and are of the form t l t , where the p ’s are negativej j
ˆ Ž . Ž .integers, l ` / 0, and the eigenvalues of A t arej

r j ˆ ˆl t s t l t , l ` / 0, j s 1, . . . , n ,Ž . Ž . Ž .j j j

r j ˆ y1 XŽ . w Ž . Ž .xwith r s h q p q p . Thus l t s t l ` q OO t , l rl s r rt qj j j j j j j
X̂ ˆ y2Ž .l rl s r rt q OO t , andj j j

lX 2 r 2
j j2 yr y2 y1jll t s s t 1 q OO t , 3.1Ž . Ž . Ž .Ž .j 3 ˆ16l 16l `Ž .j j

1r22rjr y2 y3j ˆm t s t l t q t q OO t . 3.2Ž . Ž . Ž . Ž .j jž /16

ˆŽ . w x Ž .Assumption 2.10 is satisfied on some b, ` unless r s y2 and l ` sj j
1 y2Ž .y1r4 for some j, that is, when l t f y t . This should not bej 4

Y 1 y2surprising, since the equation y q t y s 0 is critically located between4

oscillatory and nonoscillatory equations. Except for this case, V and Vy1

w xare bounded on some b, ` .
Ž . Ž . yr j r2y1ŽNow we turn to the perturbation terms. By 3.1 , ll t s ct 1 qj

Ž y1 ..OO t , and

¡ yr j r2y2OO t if r ) y2,Ž . jX
llX j y2~OO t if r s y2,Ž .arctan ll s s 3.3Ž .Ž . jj 21 q ll j r r2¢ jOO t if r - y2,Ž . j

Ž y1ye . Ž .that is, in every case it is OO t for some e ) 0. It follows by 2.12 that
y1 X w .V V g L b, ` .
Now we turn to the term Vy1Py1LPV. Here we need a more detailed

Ž . Ž .study of the matrix L, which is defined in 2.5 . Since U t is unitary,
U U X UX Ž U X.U U XUU s I, it follows that U U s yU U s y U U and U U is

XU Ž .skew-hermitian. Put U U s m , m s y m , j, k s 1, . . . , n. Then byjk jk k j
Ž .2.5 ,

.
1r4 1r4.1r4 1r4

l l l l.j k j k.q m y mjk jk.ž / ž /ž / ž /l l l l� 0 � 0k j k j.1 .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .L s ..
1r4 1r41r4 1r42 .l l l l.j k j k.y m q mjk jkž / ž /.ž / ž /l l l l� 0 � 0k j k j.

.
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The permutation P rearranges L into n = n blocks of size 2 = 2 such that
Ž . y1the j, k th block of P LP is located in the 2 j y 1 and the 2 jth row and

the 2k y 1 and 2k th column and consists of

1r4 1r41r4 1r4
l l l lj k j kq yž / ž /ž / ž /l l l lk j k j

m .jk 1r4 1r41r4 1r4
l l l lj k j ky q� 0ž / ž /ž / ž /l l l lk j k j

Ž . Ž .By the way, if in addition, A t is real valued symmetric and U t is real
orthogonal, then U TU X is skew-symmetric, and in particular, its diagonal
elements, m , vanish. Thus the diagonal blocks of Py1LP are all identi-j j
cally zero. By the block structure of V, the same holds for Vy1Py1LPV as
well.

hqp ˆ ˆŽ . Ž . Ž .Recall that A t s t A t , where A t is analytic at t s `. Therefore
Ž . Ž .the matrix U t that diagonalizes A t may be chosen to be analytic at

U X Ž y2 .t s ` and U U s OO t . It follows from the above calculations that each
term of L and Py1LP consists of expressions of the type

OO ty2qŽ r jyr k .r4 ,Ž .

w .which is integrable on a, ` if r y r - 4. The differences r y r arej k j k
independent of h, p and are necessarily integers. Thus the matrix Py1LP
is integrable if

< <max r y r F 3.j k
j, k

Since V, Vy1 are bounded near t s `, them Vy1Py1LPV s VPy1LPV g
w . Ž .L b, ` . By this we show that the perturbation terms in 2.11 are inte-

grable and the following is proved.
h ˜Ž . Ž . Ž .THEOREM 1. Consider Eq. 1.1 , where A t s t A t , h is a real number,

Ž̃ .and A t is a n = n hermitian matrix function and is analytic and in¨ertible on
Ž .a, ` , but possibly meromorphic and not necessarily in¨ertible at t s `. Let

rj ˆ ˆŽ . Ž . Ž . Ž . Ž . Ž .l t , . . . , l t be the eigen¨alues of A t , l t s t l t , l ` / 0. If1 n j j j
< <max r y r F 3 andj, k j k

lX 2
j x1 q / 0 on a, ` ,Ž316l j

Ž .then the solutions of Eq. 1.1 and those of the corresponding first-order system
Ž . Ž . Ž .2.1 may be represented by 2.14 and 2.13 , respectï ely.
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h ˜ ˜Ž . Ž . Ž .Let us consider a special case when A t s t A t and A t is analytic
Ž .and invertible, not only on the open interval a, ` , but even at t s `.

h̃Ž . Ž .Then all r ’s are equal to the same h, l t s t l t , and all we have toj j j
Ž .check is condition 2.10 .

Ž .THEOREM 2. Consider the second-order differential system 1.1 with

h ˜A t s t A t ,Ž . Ž .

Ž̃ .where h is an arbitrary real number, and A t is a n = n hermitian matrix
Ž xfunction on the real line and analytic on a, ` and in¨ertible there. Let

h̃Ž . Ž . Ž . Ž . Ž .l t , . . . , l t denote the real eigen¨alues of A t , l t s t l t and as-1 n j j
sume that

lX 2
j x1 q / 0 on a, ` .Ž316l j

Ž .Then the solutions of Eq. 1.1 and those of the corresponding first-order
Ž . Ž . Ž .system 2.1 may be represented by 2.14 and 2.13 , respectï ely.

EXAMPLE. Let

t a tg

A t s ,Ž . g bž /t t

where a , b , and g arbitrary real numbers and consider, for example, the
Ž .case g ) a , b. A t can be written as

t ayg 1gt ,bygž /1 t

which does not satisfy the analyticity assumptions of Theorem 1 if a y g ,
b y g - 0 are not integers. Nevertheless the arguments of Theorem 1

1g aygŽhold with minor modifications. For, near t s `, l s "t 1 q t1, 2 2
1 byg . Ž .q t q ??? , and we take the nonunitary2

1 byg ayg1 y1 y t y t q ???Ž .2
U t s .Ž . 1 byg aygž /1 q t y t q ??? 1Ž .2

X Ž aygy1. Ž bygy1. y1 X w . Ž .U s OO t q OO t , and so U U g L a, ` . Equation 3.1 is
replaced by

ll 2 t s ctg 1 q OO t ayg q OO t byg ,Ž . Ž . Ž .Ž .
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Ž .and 3.3 is modified depending on whether g - y2, g s y2, or g ) y2.
Ž Ž ..X Ž aygy1.For g s y2, for example, we have arctan ll t s OO t q

Ž bygy1. w .OO t g L a, ` .
Theorems 1 and 2 are easily extended to more general cases, say, when

r ˜ qA t s t A t ,Ž . Ž .

Ž̃ . Ž .where r, q are real numbers and q ) 0, and A s is real analytic on a, `
Ž . Ž . Ž y1 .but possibly meromorphic at s s `. Indeed, if U s s U ` q OO s is

Ž̃ . Ž .the unitary matrix that diagonalizes A s , we apply in 2.3 the matrix
Ž q. y1Ž q. Ž q. Ž y2 q. qy1 Ž yqy1. w .U t . Then U t drdt U t s OO t qt s OO t g L a, ` .

Ž . Ž . pj yk qThe eigenvalues of A t are of the shape l t s t Ýc t andj k j

2X 2 p y1 yqjl OO t 1 q O tŽ . Ž .Ž .j2 yp y2 yqjll t s s s OO t 1 q OO t .Ž . Ž . Ž .Ž .j 3 3pj16l OO tŽ .j

Consequently,

¡ yp j r2y2OO t if p ) y2,Ž . jX
ll j yqy1~OO t if p s y2,Ž .s j21 q ll J p r2¢ jOO t if p - y2,Ž . j

are all integrable near t s `. The rest of the discussion follows as in the
previous theorems.

4. AN APPLICATION TO OSCILLATION

One of the main questions of oscillation theory is the existence of
conjugate points. Recall that for a vector differential equation,

yY s A t y, 4.1Ž . Ž .

Ž .h t is called a conjugate point of t if the equation has a nontrivial solution
y such that

y t s y h t s 0.Ž . Ž .Ž .

If a conjugate point exists for all sufficiently large values of t, the equation
is called oscillatory.

w xAs in the detailed calculations of 5 , it can be shown that a conjugate
Ž . Ž Ž X .2 .1r2point h t exists for large values of t if m s l q l r4l is purej j j j

Žimaginary for some j and the corresponding expHm is a trigonometricj
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.function , and that

2XlŽ .h t j
IIm l q ds s mp q o 1 4.2Ž . Ž .H j) ž /4lt j

Ž .for some m s 1, 2, . . . . Thus, Eq. 4.1 is oscillatory if

2X
` l j

IIm l q ds s `. 4.3Ž .H j) ž /4l j

For the case n s 1, we thus recover under the assumptions of Theorems 1
and 2 the necessary and sufficient condition for the oscillation of the scalar

Ž . w xequation 1.2 , as obtained in 9 .
w x Ž . Ž .It was conjectured in 12 that for a symmetric matrix A t , Eq. 4.1 is

oscillatory if

t
lim l A s ds s y`,Ž .Hmin½ 5tª` 0

where l denotes the minimal eigenvalue of the corresponding matrix.min
w xIn 14 this is verified with the additional assumption that

ty1lim inf t trace A s ds - `.Ž .H½ 5tª` 0

Ž . Ž . hFor Eq. 4.1 with A t s t A, where A is a constant symmetric matrix,
Ž .4.3 is a weaker assumption. This is, of course, the result of the additional
assumptions about the analytic behavior of the coefficient matrix.
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