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BOUNDS FOR SOLUTIONS OF A DIFFERENTIAL INEQUALITY

URI ELIAS

(Communicated by Hal L. Smith)

Abstract. This work compares the solutions of an nth order differential in-
equality plus n boundary conditions with the solution of the related differential
equation with n−1 boundary conditions. The differential operator is assumed
to be disconjugate. It is proved that under suitable conditions the ratio of
these solutions is monotone. The solution of the inequality can be replaced by
the corresponding Green’s function.

1

A series of papers by Erbe and Wang [ErW], Erbe, Hu and Wong [EHW], Eloe
and Henderson [EH3], [EH4] (see more references in [EH4]) studies the existence of
positive solutions for nonlinear differential equations of the type

y(n) + a(t)f(y) = 0

with certain boundary conditions, by utilizing lower bounds for solutions of differ-
ential inequalities and Green’s functions. A typical example for these bounds is the
following result [EH1, Theorem 1]: If

(−1)n−ky(n)(t) ≥ 0,

y(i)(0) = 0, i = 0, . . . , k − 1,

y(j)(1) = 0, j = 0, . . . , n− k − 1,

(1)

then

min
t∈[ 14 , 3

4 ]
y(t) ≥ 4−m max

t∈[0,1]
y(t), m = max{k, n− k}.(2)

A similar inequality holds for (−1)n−kG(t, s) for each s, 0 < s < 1, when G is
Green’s function of the operator dn

dxn and the bv conditions of (1). A generalization
of (2) for multipoint boundary value problems is proved in [EH2].

The proof of inequality (2) is based on the following [EH1, Lemma 2]:

Proposition. Let y(t) satisfy (1) and let t1 denote its unique local maximum point
in [0, 1]. Then

y(t) ≥
{(

t
t1

)k max[0,1] |y|, 0 ≤ t ≤ t1,(
1−t
1−t1

)n−kmax[0,1] |y|, t1 ≤ t ≤ 1.
(3)
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The aim of this work is to present some variations on the theme of inequality
(3). It will be shown that the proof of [EH1, Lemma 2] in fact contains more than
is claimed in (3), and it will be generalized in various directions. For example,
not only a lower bound for y/tk is available but even its monotonicity. It extends
also to other boundary conditions and is compared with other solutions of the
corresponding homogeneous differential equation.

We prefer to formulate the results in terms of quasi-derivatives L0y = ρ0y,
Liy = ρi(Li−1y)′, ρi > 0, i = 1, . . . , n, instead of derivatives y(i), and a general
disconjugate operator

Lny = ρn(ρn−1 . . . (ρ1(ρ0y)′)′ . . . )′

which replaces y(n), since these exchanges have no effect on most of the proofs.

Theorem 1. Let y satisfy

(−1)n−kLny(t) ≥ 0 on [a, b],(4)

Liy(a) = 0, i = 0, . . . , k − 1,

Ljy(b) = 0, j = 0, . . . , n− k − 1,
(5)

and let ϕk be the solution of the initial value problem

Lnu = 0,

Liu(a) = δi,k, i = 0, . . . , n− 1,

i.e., ϕk(t) = ρ−1
0 (t)

∫ t

a ρ
−1
1 (t1)

∫ t1
a . . .

∫ tk−1

a ρ−1
k (tk) dtk . . . dt1. Then y/ϕk is non-

increasing on [a, b]. If (−1)n−kLny(t) > 0 on (a, b), then y/ϕk is strictly decreasing
there.

Analogously, if ψn−k is the solution of Lnu = 0, Liu(b) = (−1)n−kδi,n−k,
i = 0, . . . , n− 1, then y/ψn−k is nondecreasing on [a, b] and it is strictly increasing
if inequality (4) is strict.

For Lny = y(n), ϕk = tk/k!, we get that the quotient y/tk is decreasing on (0, 1].
In particular (3) follows. However, much more is available:

Theorem 2. If y satisfies

(−1)n−ky(n)(t) ≥ 0, on [0, 1],

y(i)(0) ≥ 0, i = 0, . . . , k − 1,

(−1)jy(j)(1) ≥ 0, j = 0, . . . , n− k − 1,

then

(−1)` d
`

dt`

( y
tk

)
≥ 0, on (0, 1], ` = 0, . . . , n− k.(6)

If an inequality in one of the n boundary conditions at t = 0 or t = 1 is strict or if
(−1)n−ky(n)(t) > 0 on [0, 1], then also inequality (6) is strict on (0, 1).

This applies, in particular, to the solutions of (1).
The solutions ϕk(t), ψn−k are not the only possible comparison functions. For

example,
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Theorem 3. Let y satisfy the differential inequality (4) and boundary conditions
(5) and let wk(x) be the solution of the differential equation

Lnw = 0(7)

and the n− 1 boundary conditions
Liw(a) = 0, i = 0, . . . , k − 1,

Ljw(b) = 0, j = 0, . . . , n− k − 2,
(8)

normalized, say, by Lkw(a) = 1. Then y/wk is nonincreasing on [a, b]. If inequality
(4) is strict, then y/wk is strictly decreasing.

If wk−1(x) is the solution of the same equation and the boundary conditions

Liw(a) = 0, i = 0, . . . , k − 2,

Ljw(b) = 0, j = 0, . . . , n− k − 1,

then y/wk−1 is nondecreasing on [a, b]; it is strictly increasing if (−1)n−kLny > 0
there.

In the next section we prove Theorems 1-3. In the third section they are general-
ized for more boundary value conditions. We shall also show that Green’s functions
are analogous to solutions of differential inequalities.

2

Our arguments rely on some facts which are well known in the theory of discon-
jugacy and which we recall here. Namely, the n boundary conditions (5) enforce
through Rolle’s theorem a minimal number of zeros for each of the quasi-derivatives
L0y, . . . , Lny, while inequality (4) sets an upper bound to their number. Putting
these two opposing trends together, we have

Lemma. If y satisfies the differential inequality (−1)n−kLny > 0 on (a, b) and the
boundary conditions (5), then

(a) Between any two zeros of Lty, t = 0, 1, . . . , n − 1, there is precisely one
simple zero of Lt+1y and, in addition to the n zeros which are prescribed by (5),
these are the only zeros of Lt+1y in [a, b].

(b) y > 0 on (a, b).

Proof. First we observe that since (−1)n−kLny > 0 on (a, b), no Lty may vanish
identically on any subinterval of [a, b] and all their zeros are isolated. Since y has
k+ (n− k) = n zeros at t = a and t = b, it follows by Rolle’s theorem that each of
L0y, . . . , Ln−1y has at least one zero in [a, b]. Suppose that one of them also has
some zero which is not deduced by Rolle’s theorem, i.e., some Liy has in (a, b) a
zero which is not located between two zeros of Li−1y, or Liy has more than one
simple zero between two zeros of Li−1y. Then a repeated application of Rolle’s
theorem will imply that Lny changes its sign in (a, b), which is impossible. This
verifies (a). The same argument shows, in particular, that y 6= 0 in (a, b).

As a consequence it follows that if ti denotes the first zero of Liy in (a, b], then

a < tk < tk−1 < . . . < t1 < t0 = b,(9)

a < tk < tk+1 < . . . < tn−1 < b.(10)

(9) is obvious since by the boundary values at t = a Rolle’s theorem implies ti ∈
(a, ti−1), i = 1, . . . , k. (10) is a more delicate consequence, which follows from (a),
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since for i = k+ 1, . . . , n, Liy cannot have a zero in (a, ti−1). Another formulation
is that on a right neighborhood of a,

Liy(a+ ε)Li+1y(a+ ε) > 0, i = 0, . . . , k − 1,(11)

Liy(a+ ε)Li+1y(a+ ε) < 0, i = k, . . . , n− 1.(12)

(11) is obvious and (12) is a consequence of (10). For, if Liy and Li+1y = ρi+1(Liy)′

have the same sign on the right hand side of a, then |Liy| increases near a and the
first zero of Li+1y must precede that of Liy, contradicting (10).

It follows by (11),(12) that sgn(Lny) = (−1)n−ksgn(L0y), and since y 6= 0 and
sgn(Lny) = (−1)n−k by (4), we have y > 0.

Note that the lemma may be formulated even if (−1)n−kLny ≥ 0 and it vanishes
identically on some subinterval. However, in this situation, one has to replace ‘zero
points’ by ‘zero components’ — maximal subintervals throughout which a function
vanishes. See [Cop, p. 107].

Proof of Theorem 1. Let us discuss first the case (−1)n−kLny > 0. Suppose that
y/ϕk is not monotone in [a, b]. Then for some c > 0, y/ϕk attains the value c at
least at two different points and the corresponding function

h = y − cϕk

has two distinct zeros in (a, b). Note that since (−1)n−kLnh > 0, h 6≡ 0 on any
subinterval and y/ϕk cannot be constant on any subinterval. After these elementary
observations one can follow verbatim the arguments of [EH1, Lemma 2]. For the
sake of convenience we summarize it here.

Let us denote the first two zeros of Lih, i = 0, . . . , k, in (a, b] by ci,1, ci,2. We
claim that they exist and that

a < ci,1, ci,2 < ti, i = 0, . . . , k.(13)

For i = 0 this is self-evident since t0 = b and h(t) has two zeros in (a, b). Suppose
that for some j < k, (13) is proved, i.e., Ljh has two zeros cj,1, cj,2 such that

a < cj,1 < cj,2 < tj .

Then the next quasi-derivative Lj+1h has two zeros cj+1,1 ∈ (a, cj,1), cj+1,2 ∈
(cj,1, cj,2), i.e., both in (a, tj). We want to show that they are in fact in the smaller
interval (a, tj+1) ⊂ (a, tj). On the right hand side of the k-tuple zero of y at t = a,
we have L0y > 0, . . . , Lky > 0. Hence Lj+1y > 0 in (a, tj+1) and Lj+1y < 0 in
(tj+1, tj), while Lj+1ϕk > 0 on the whole (a, b]. Consequently

Lj+1h = Lj+1y − cLj+1ϕk 6= 0 in [tj+1, tj ],

and cj+1,1, cj+1,2 must be located in (a, tj+1). This proves (13) for all j = 0, . . . , k.
Thus, we conclude finally that Lkh has two zeros in (a, tk) and consequently

Lk+1h has at least one zero in (a, tk). But this is impossible since Lk+1h ≡ Lk+1y,
and the first zero of Lk+1y is tk+1, which satisfies tk+1 > tk according to (10).

This contradiction shows that y/ϕk must be monotone. Since y/ϕk is positive
in (a, b) and vanishes at b, it is strictly decreasing. Note that a separate treatment
of the cases k = 1, k = n− 1, as in [EH1], is avoided.

If it is only assumed that (−1)n−kLny ≥ 0, we replace y by yε = y+ε
∫ b

a
G(t, s) ds,

ε > 0, where G is Green’s function of the operator (−1)n−kLn and bc (5). Then
(−1)n−kLnyε = (−1)n−kLny+ ε > 0 and yε/ϕk is strictly increasing. As ε↘ 0, we
conclude that y/ϕk is nondecreasing.
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Proof of Theorem 2. We need the following generalization of the inequality of Kig-
uradze: If for some k < n

y(i)(0) ≥ 0, i = 0, . . . , k − 1,

(−1)n−ky(n)(t) ≥ 0 on [0, L],
(14)

then

(−1)n−k
( y
tk

)(n−k)

≥ 0 on (0, L].

(See [Eli, Theorem 6.12].) Our y satisfies (14) according to (1), therefore

z(t) = y/tk

satisfies (−1)n−kz(n−k) ≥ 0 on (0, 1]. By the identity

z(`) = (y/tk)(`) =
∑̀
j=0

(
`

j

)
y(j)(t−k)(`−j)

=
∑̀
j=0

(−1)`−j

(
`

j

)
(k + `− j − 1)!

(k − 1)!
y(j)t−k−`+j ,

and the boundary conditions (−1)jy(j)(1) ≥ 0, j = 0, . . . , n− k− 1, it follows that
(−1)`z(`)(1) ≥ 0, ` = 0, . . . , n− k − 1. Now the inequalities

(−1)n−kz(n−k)(t) ≥ 0 on (0, 1],

(−1)`z(`)(1) ≥ 0, ` = 0, . . . , n− k − 1,
(15)

imply (6) by n− k repeated integrations of z(n−k) on [t, 1].
Next we turn to the cases of strict inequalities. If, say, y(i0)(0) > 0 for some i0,

0 ≤ i0 ≤ k− 1, then take v = y− y(i0)(0)ti0/i0!. v satisfies (14) and it is concluded
as above that (−1)n−k(v/tk)(n−k) ≥ 0 on (0, 1]. Consequently

(−1)n−kz(n−k) = (−1)n−k(v/tk)(n−k) + y(i0)(0)(−1)n−k(ti0−k/i0!)(n−k) > 0

on (0, 1]. If, on the other hand, (−1)j0y(j0)(1) > 0 for some j0, 0 ≤ j0 ≤ n− k − 1,
we get (−1)`z(`)(1) > 0 for all j0 ≤ ` ≤ n − k − 1. In both cases it follows by
repeated integrations of (15) that (−1)`z(`)(t) > 0 on (0, 1).

Finally, if (−1)n−ky(n) > 0 on [0, 1], take v = y− εtk(1− t)n−k, with ε > 0 small
enough such that (−1)n−kv(n) = (−1)n−ky(n) − n!ε ≥ 0. Then

(−1)`(y/tk)(`) = (−1)`(v/tk)(`) + ε(−1)`((1 − t)n−k)(`) > 0

for ` = 1, . . . , n− k on (0, 1).

Proof of Theorem 3. The proof is even more simple than that of Theorem 1, and
we shall outline only some points. If y/wk is not monotone in [a, b], then for some
c > 0, y/wk attains the value c at least at two different points and the function
h = y− cwk has two zeros in (a, b). According to the boundary conditions y− cwk

also has n− 1 zeros at the endpoints a, b, i.e., altogether n+ 1 zeros in [a, b]. But
then the nth quasi-derivative Lnh must change its sign in (a, b), in contradiction
with (−1)n−kLnh ≡ (−1)n−kLny(t) > 0. Therefore y/wk is monotone.

Since wk is a solution of a disconjugate equation, it cannot have more than the
k+(n−k−1) = n−1 zeros which are prescribed at t = a, b, so their multiplicities are
precisely k and n−k−1, respectively. Since y/wk > 0 on (a, b) while limt→b− y/wk =
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0, y/wk must be decreasing. The nonstrict inequality is treated as in the proof of
Theorem 1.

The arguments for y/wk−1 are analogous.

3

As one observes the proofs of the Lemma and Theorem 3, it is evident that
they depend on nothing but a repeated application of Rolle’s theorem to ensure
existence of zeros of higher quasi-derivatives. Therefore the results can be extended
to boundary conditions other than (5).

For example, the proof of (9) in the Lemma relies on the k-tuple zero of y at a.
However, even if the quasi-derivatives of y do not vanish at a but rather Li−1y, and
Liy = ρi(Li−1y)′ have the same sign on the right hand side of a, Liy must have a
zero in (a, b] before the first zero of Li−1y (recall the graph of Li−1y(t)!). Similarly,
if Lj−1y and Ljy have opposite signs on the left hand side of b, Ljy has a zero after
the last zero of Lj−1y in [a, b). Therefore one can replace the boundary conditions
(5) by

(Liy − αiLi+1y)(a) = 0, i = 0, . . . , k − 1,

(Ljy + βjLj+1y)(b) = 0, j = 0, . . . , n− k − 1,
αi ≥ 0, βj ≥ 0.

It is easily checked that (9)-(10), (11)-(12) and Theorem 1 hold true for these
boundary conditions. We skip the technical details. Once it is known that the
quotient y/ϕk is monotone, it is possible to show that it decreases by considering
αi, βj → 0+ and a continuity argument.

Another possibility is to take such n boundary conditions
Liy(a) = 0, i = i1, . . . , ik,

Ljy(b) = 0, j = j1, . . . , jn−k,
(16)

i1 < i2 < . . . < ik, j1 < . . . < jn−k, which imply that each quasi-derivative
L0y, . . . , Ln−1y has some zero in [a, b]. This is guaranteed by Pólya’s condition for
Hermite-Birkhoff interpolation:

At least ` boundary conditions of the boundary conditions are imposed
on the first ` quasi-derivatives L0y, . . . , L`−1y for ` = 1, . . . , n.

By this condition for ` = 1, at least one boundary condition is imposed on L0y.
For ` = 2, either one zero is imposed on L1y or two zeros on L0y. In the latter case
L1y has a zero in (a, b). An inductive argument shows that each L0y, . . . , Ln−1y
has some zero in [a, b].

Pólya’s condition is satisfied, for example, by the (k, n− k)-focal boundary con-
ditions Liy(a) = 0, i = 0, . . . , k − 1, Ljy(b) = 0, j = k, . . . , n− 1.

Theorem 4. Let y satisfy differential inequality (4),

(−1)n−kLny(t) ≥ 0 on [a, b],

and the boundary conditions (16),

Liy(a) = 0, i = i1, . . . , ik,

Ljy(b) = 0, j = j1, . . . , jn−k,

which obey Pólya’s condition. Let us delete from (16) one boundary condition so
that the remaining n − 1 satisfy Pólya’s condition for the n − 1 quasi-derivatives
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L0y, . . . , Ln−2y, and let w(t) be a positive solution of the differential equation (7)
which satisfies these n− 1 boundary conditions. Then y/w is monotone on [a, b].

If the bc which was omitted from (16) is at the endpoint b, y/w is nonincreasing,
while if it is at t = a, y/w is nondecreasing. If (−1)n−kLny(t) > 0 on (a, b), y/w
is strictly monotone.

Theorems 1, 3 and 4 have analogues, where the solution of the differential in-
equality (−1)n−kLny(t) ≥ 0 is replaced by the Green’s function of the operator
(−1)n−kLn plus n suitable boundary conditions. We formulate and prove only one
of these results, the analogue of Theorem 4.

Theorem 5. Let G(t, s) be Green’s function of the operator (−1)n−kLn and the
boundary conditions (16) which obey Pólya’s condition and let w(t) be the solution
of Lny = 0 which was defined in Theorem 4. Then for each fixed s, a < s < b,
G(t, s)/w(t) is increasing or decreasing according to whether the highest boundary
condition which was omitted from (16) was at t = a or at t = b, respectively. It is
strictly monotone unless all n− 1 bc which define w are concentrated at one of the
endpoints a or b.

Note that the results of [EH1] are formulated for Green’s function of the operator
Ln which differs from our result by the factor (−1)n−k.

Proof of Theorem 4. This proof, too, is analogous to that of Theorem 1. By Pólya’s
condition, for every function y which satisfies (16), each Liy, i = 1, . . . , n− 1, has
at least one zero in [a, b]. The same argument as in the proof of the Lemma shows
that for y which satisfies inequality (4), no Liy has in (a, b) a zero which is not
located between two zeros of Li−1y. Also (9),(10) have analogies:

ti+1 < ti if i = i1, . . . , ik,

ti+1 > ti if i 6= i1, . . . , ik.

Similarly,

Liy(a+ ε)Li+1y(a+ ε) > 0, i = i1, . . . , ik,

Liy(a+ ε)Li+1y(a+ ε) < 0, i 6= i1, . . . , ik.

Consequently (4),(16) imply that y > 0 on (a, b).
According to the assumption, the n − 1 boundary conditions which determine

w, satisfy Pólya’s condition only for the n − 1 quasi-derivatives L0w, . . . , Ln−2w,
therefore each of L0w, . . . , Ln−2w has at least one zero in [a, b]. If w also has an
additional zero in (a, b), the same reasoning implies that even Ln−1w has a zero in
(a, b), contradicting Lnw = ρn(Ln−1w)′ = 0. Therefore w 6= 0 in (a, b) and it may
be taken that w > 0. Note that one obvious way to choose w is to delete the bc
from (16) which involves the highest among the appearing quasi-derivatives.

Now we continue along the outlines of the proof of Theorem 3. h = y − cw
satisfies the same n− 1 bc as w does, and if for some c > 0, it also has two zeros in
(a, b), then each L0h, . . . , Ln−2h has at least 3 zeros in [a, b]. But then Lnh = Lny
must change its sign in (a, b), in contradiction with (−1)n−kLnh > 0. It follows
that any equation y/w = c, c > 0, has at most one root in (a, b). Since w 6= 0 on
(a, b), it follows that the continuous y/w is strictly monotone there.

It remains to decide whether y/w is decreasing or increasing. Consider the case
in which the bc which was omitted from (16) is at the endpoint b, say Ljn−k

y(b) = 0.
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Since y/w is monotone, the limits

lim
t→a+

y/w = A ≥ 0, lim
t→b−

y/w = B ≥ 0

exist, possibly +∞. Suppose that y/w is increasing, i.e.,

0 ≤ A ≤ y/w ≤ B ≤ +∞, A < B.

Consider the function h = y − Aw ≥ 0. Then lim h/w = 0 and h has at t = a a
zero of multiplicity greater than y has there. If, say, the multiplicity of the zero of
y at t = a is r, i.e., i1 = 0, i2 = 1, . . . , ir = r − 1 but ir+1 > r, then h has a zero of
multiplicity there at least r + 1: Lih(a) = 0 for i = 0, . . . , r, ir+1, . . . ik. But thus
(−h) satisfies

(−1)n−k−1Ln(−h) ≡ (−1)n−kLny > 0 on [a, b],

and the (k + 1) + (n− k − 1) = n boundary conditions

Lih(a) = 0, i = 0, . . . , r, ir+1, . . . ik,

Ljh(b) = 0, j = j1, . . . , jn−k−1,

i.e., (−h) satisfies an assumption similar to (5),(16) with k replaced by k + 1. But
we saw that this implies −h ≥ 0, a contradiction. Therefore y/w cannot increase.

If Lny satisfies a nonstrict inequality, the proof is completed as that of Theorem
1. The properties of the required Green’s function are verified below.

Proof of Theorem 5. Green’s function of the operator (−1)n−kLny = 0 plus the
boundary conditions (16) exists since the equation (−1)n−kLny = 0 with the same
boundary conditions has only the trivial solution. Otherwise, if such y 6≡ 0 exist,
then by Pólya’s condition each Liy, i = 0, . . . , n − 1, has a zero in [a, b]. But
ρn(Ln−1y)′ = Lny = 0, so Ln−1y = const, and if it vanishes at one point of [a, b],
then it is identically zero there. By the same argument one gets recursively that
Ln−2y ≡ 0, . . . , L0y ≡ 0. Consequently Green’s function exists.

Green’s function of bc (16) and a solution y of (4),(16) have some analogy: they
both satisfy the same n bc but on the other hand the (n − 1)th quasi-derivative
Ln−1G is discontinuous. Thus, one cannot apply Rolle’s theorem to Ln−2G even
if it has two zeros in [a, b]; Ln−1G may change its sign at its discontinuity point
without vanishing there. Nevertheless we claim that G(t, s) > 0 on (a, b) for any
fixed s, a < s < b.

To verify that G(t, s) 6= 0, we distinguish between two cases, namely whether a
boundary condition is imposed on the (n− 1)th quasi-derivative or not.

(i) If all n boundary conditions of (16) are imposed on L0y, . . . , Ln−2y, then
we deduce that Ln−2G(t, s) has at least two zeros in [a, b]. If, in addition, G(t, s)
has a zero in (a, b), then Ln−2G(t, s) would have at least 3 zeros. Thus Ln−1G(t, s)
would change its sign at least twice in (a, b). But this is impossible since LnG =
ρn(Ln−1G)′ = 0, and Ln−1G is constant on [a, s) and on (s, b].

(ii) Suppose that a boundary condition is imposed by (16) on Ln−1y, say
Ln−1y(b) = . . . = Lry(b) = 0, Lr−1y(b) 6= 0. Then LrG = . . . = Ln−1G ≡ 0
on (s, b]. By Pólya’s condition at least r boundary conditions are imposed at the
endpoints on L0y, . . . , Lr−1y. If in addition G(t, s) has a zero in (a, b), then LrG
changes its sign in (a, b). That exchange of sign cannot be located in (s, b) since
LrG ≡ 0. So LrG has a change of sign in (a, s) and, of course, LrG(s, s) = . . . =
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Ln−2G(s, s) = 0. But this would imply that Ln−1G changes its sign in (a, s),
contradicting Ln−1G =const.

Thus it is shown that G(t, s) 6= 0 in (a, b), and it remains only to determine its
sign. But y(t) =

∫ b

a
G(t, s) ds is the solution of the equation (−1)n−kLny = 1 plus

bc (16), which is positive according to Theorem 4. Therefore G(t, s) > 0 on (a, b)
also. The analogous w > 0 was proved in Theorem 4.

Finally we turn to the main claim of the theorem. If for some fixed s ∈ (a, b),
G(t, s)/w(t) is not monotone, then a function h(t) = G(t, s)− cw(t) has two zeros
in (a, b) and it satisfies the same n − 1 of the bc (16) as w does. This leads to a
contradiction as above: For each ` − 1 ≤ n − 2, L0h, . . . , L`−1h satisfy at least `
boundary conditions at the endpoints and by the two additional zeros in (a, b), each
of L0h, . . . , Ln−2h has at least three zeros in [a, b]. So Ln−1h has two changes of
sign in (a, b), which is impossible since Ln−1h is constant on [a, s] and on [s, b]. Thus
G(t, s)/w(t) is monotone, and it is determined whether it increases or decreases as
in the proof of Theorem 4.

If G(t, s)/w(t) is not strictly monotone but rather constant on some subinterval,
it must be constant either on [a, s] or on [s, b]. Let, for example, G(t, s)/w(t) = α(s)
on [a, s] and consider the function h(t) = G(t, s)−w(t)α(s) on [s, b]. By the standard
definition of Green’s functions and its continuity conditions at t = s, h(t) is the
solution of the initial value problem

Lnh = 0 on [s, b],

Lih(s) = (−1)n−k(ρ0(s) . . . ρn(s))−1δi,n−1, i = 0, . . . , n− 1,

i.e., h(t) is a constant multiple of ρ−1
0 (t)

∫ t

s ρ
−1
1 (t1)

∫ t1
s . . .

∫ tn−2

s ρ−1
n−1(tn−1) on [s, b].

But this h(t) cannot satisfy any bc of (16) at t = b, so a contradiction is achieved
when both G and w satisfy any common bc at b. The case when G/w is constant
on [s, b] is discussed similarly. Consequently G/w is strictly monotone when the
n− 1 bc which define w are distributed at a and at b.

On the other hand, if from the n boundary conditions Liy(a) = 0, i = 0, . . . , n−
2, L0y(b) = 0, we delete the bc at b, then both G(t, s) on [a, s] and w(t) are
determined by the same n−1 homogeneous initial values at t = a and soG(t, s)/w(t)
is constant on [a, s].
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