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Abstract. A theorem of asymptotic integration is proven for linear systems of differential equations. The theorem is designed to
fit a specialized family of differential systems which occur frequently in quantum mechanics. It is shown to be best possible in

a certain sense. The method provided differs from an established trend that transforms the differential system, via a preparation
theorem, to a differential system, where the coefficient matrix is the sum of a diagonal matrix and a remainder matrix that must
be absolutely integrable at infinity. In this work the fundamental matrix solution is given as a product of a diagonal matrix and

a perturbation of the identity matrix. The perturbation of the identity matrix being on the right in the product rather than on the
left as is common in the literature.

1. Introduction

The asymptotic theory of-dimensional linear differential systems
Y' = A@)Y, (1.2)

where A, Y aren x n matrix functions asks for representation of fundamental solutioft of (1.1)
in the vicinity oft = co. If A = A(t) is a constant matrix, then a fundamental solufitf) of (1.1) is
given by

Y (t) = Q exp{Jt), 1.2)

whereQ~1AQ = J, J is a Jordan matrix and) is a constant invertible matrix. The representation
(1.2) provides all the “local” (namely, @s— oo) essential asymptotic information of the fundamental
matrix Y (¢) as well as all the essential global information (namely forlafor Y (¢). Moreover, it also
shows in a transparent manner how the propertie$, i eigenvalues and their algebraic and geometric
multiplicities affect qualitative properties 6f(t).

However, whenA(t) genuinely depends on a real or a complex variabéerepresentation of a funda-
mental matrixY (¢) analogous to (1.2) and which provides all the local and global informatidn(6f
is not available. The “theory of asymptotic integration” of (1.1) attempts to remedy this situation. Its
importance can hardly be overestimated, as the asymptotic behaviour of solutions of nonlinear problems
require quite often asymptotic integration of a linearized problem.

When A(t) is meromorphic at = oo, the “local theory” is in satisfactory state, although the global
theory has many outstanding problems unresolved, notably the “connection problem”. See, e.g., [17-20].
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The Hukuhara—Turritin algorithm provides a representatioy () in certain sectors of the complex
plane. WhenA(t) is meromorphic at infinity, it is also possible to carry out the asymptotic integration in
sectors of the complex plane by a method of triangularization that can be extracted from [9] A{then
ceases to be meromorphic, the theory of asymptotic integration is much more difficult and it requires
new techniques.

The asymptotic integration of a perturbed system of the form

Y' = (D(t) + RQ))Y, (1.3)
D(t) = diag{ (1), ... Ma®}, R = (rjal) s, (1.4)

is widely discussed in the literature. Since a fundamental solution of the unperturbed edtiatiaRY
is

B(t) = exp< /tz D(s) ds> ,

one may hope that an asymptotic representation of a fundamental solution of (1.3) be given by

Y() = (I + Q) exp( /t : D(s) ds) (1.5)

with Q(t) — 0 ast — oo. Some of the early theorems, like [12], provided asymptotic integration under
various assumptions. One of the most simple conditionRé\;(t) — Ax(t))| > c for all j # k£ and
some positive constamt

The ability to integrate (1.3) was substantially enhanced by Levinson [14] who assumed that
R € LY(a, o) plus “dichotomy conditions”for each pair of integerg # k and for all s and ¢t such
thata < s <t < oo, either

t
/ Re(\; — \p) dr < K (L6)

or
t
/ Re(\; — \i) dr > Ko, (1.7)

whereK; and K, are some constants
Levinson utilized an extra similarity transformation which rediagonaliZes R. This was further
enhanced by Harris and Lutz [10,11] who showed how to transform (1.3) into a system

Y} = (Dn(t) + BN (t) Y,
via repeated diagonalizationg = Y, Y;_1 = (I +Q;)Y;,j = 1,..., N, so thatQ ;(cc) = 0 and so that
N

v(t) = [[ (I +Q;®) exp( / " Dn(s) ds).

=1
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However,D y (t) does not coincide necessarily wifb(t) which consists of the eigenvalues of the unper-
turbed system.

It turns out that quotients made of certain elementd2(f) and certain differences; — A, play a
crucial role in the asymptotic integration. If

-
Aj(t) = Ae(?)

1 b
(7)\]‘(15) — )\k(t)R(t)) € L[a, ), 1.9

forall j,k=1,...,n,j # k, then

R(t) — 0 ast — oo, (1.8)

wuzu+mmw%fﬁ@@) (1.10)

where D consists of the eigenvalues 6f + R. See [3]. Note that these generalizations of Levinson’s
theorem actually use repeated transformations to reduce the given equation to Levinson’s form and then
apply Levinson’s theorem. See also [1,13,16].

While (1.5) and (1.10) seem similar, there is an essential difference between them. In (1.5) there appear
the eigenvalues of the original diagoraland so they preserve the original physical meaning, which isin
contrast to (1.10). In the setting of quantum mechanics, the “physical meaning” of the eigenvalues of the
coefficient matrixA(t) are of great importance. They are proportional to the energy levels of a quantum
mechanical system. Whether the representation (1.5) holds or not makes then a substantial difference.
Another drawback of (1.10) is that the calculation of the eigenvaluds ef D + R may be a difficult
task.

One way to overcome this difficulty is suggested by Eastham in [3]. It is shown that if in addition to
(1.8) and (1.9) also

_r
Aj(t) = Ae(?)

is satisfied then the solution is given as in (1.5). It was observed also in [5] that under appropriate
circumstance®(t) can be chosen to be a¥t).

It is also observed that the diagonal elements and the off-diagonal eleméi(t3 pfay different roles.
Hence it makes sense to place all diagonal elements of Eq. (1ZA))rwhile the perturbation ternk(t)
consists only of off-diagonal terms. This convention will be assumed throughout the rest of our work.

The literature is abundant of representation of fundamental solutions of Eq. (1.3) as in (1.5), namely,
a product of two matrices such that the diagonal matrix exp(fti D(s)ds) is on the right and the
matrix I + Q(t), which is a perturbation of the identity matrix, is on the left. In this work we look, on the
contrary, for a solutiorY'(¢) of (1.3) that is represented &= &(I + P), i.e.,

R2(t) € LYa,00), j,k=1,...,n, j #k, (1.11)

wn:w%/Emmgu+Pm) (1.12)

with a suitable, still unknown perturbatiad such thatP = o(1) ast — cc.
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The distinction between (1.5) and (1.10) makes it worth while to formulate in analogy to [5], the
following definition, both for representation (1.5) and representation (1.12):

Definition. Let D(t) € Cla, ) be a diagonal matrix. LeR(t) € C[a, o) be such that its diagonal
elements are all zero. We say that the system (1.3) is “right almost diagonal” if it possesses an asymptotic
representation (1.12) witR(¢) € Cla, co] and lim P(t) = 0 ast — oo. Similarly, if representation (1.5)

holds, the system (1.3) will be called “left almost diagonal”.

It has been shown in several problems of mathematical physics, see, e.g., [6-8], that a representation
of a fundamental solution as a prodddgtl + P), where the diagonal matrik is on the left rather than on
the right in the given product, has a merit of its own. Moreover, it is also evident from, e.g., [7], that the
resulting equation faf + P is simpler in form than the equation fos-( that would have resulted seeking
a representation/ (+ Q)®. Usually, a representatiod( + P) is possible when a special “dichotomy
condition” is satisfied. This situation occurs in the case whreis anti-Hermitian, which is frequently
encountered in quantum mechanics, see [15]. A main motivation is to gain a better understanding of the
adiabatic approximation theorem in quantum mechanics (“If the Hamiltonian is changed slowli§rom
to H, the system in a given eigenstatefd§ goes over into the corresponding eigenstaté/dfut does
not make any transitions”), which was originated by [4] and discussed by [2]. See also [6].

The purpose of this study is to present conditions on a special family of systems of differential equa-
tions (1.1), which will lead to an asymptotic approximation of a fundamental solution of the form
@(I + P). While doing so, a self contained proof of a theorem of asymptotic approximation, guaran-
teeing the existence of a perturbation maffixhaving certain desired properties, will be given.

The method provided differs from an established trend that transforms the differential system, via a
preparation theorem, to a differential system, where the coefficient matrix is the sum of a diagonal matrix
and a remainder matrix that must be absolutely integrable at infinity. Our method of proof involves the
conversion of a differential equation fd?(¢) into an integral equation in a manner to be detailed in
Section 2. It will be shown that our method will lead to a theorem of asymptotic integration which is best
possible in a certain sense. Conditions will be given in Section 3, which will guarantee that the system
(1.3) is right almost diagonal. Examples will be given that are amenable to our theorem to which the
results of [3,5,10,11,14] do not apply.

2. Someformal calculations
Substitution ofY” = &(I + P) into (1.3) with®’ = D@ leads to
D&(I + P) + &I + P) = (D + R)®(I + P),
i.e.,
P' =& 1R®(I + P). (2.1)

Let

K(t) = & 'R® — exp(— /t : D(s) ds) R(t) exp( /tz D(s) ds). 2.2)
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Here

n

t
Rt)= (rip(®) ooy K@) = (rjk(t)exp /t —(Aj—Ak)dT)

jk=1
Then
PP=K+KP. (2.3)

Assuming thatP(co) = 0, let us begin a formal integration of (2.3) as

t — [ (=) dr t & — [C(\—=Ap)dr
pin® = [ rae o d i [S7 e T ) ds,
> h=1

[e.9]

which may be written as

P(t) = — /t T K (ty) dty — /t K (t)P(ty) dty. 2.4)
Next we integrate by part the last term of (2.4):

P)=- [ Kdn - [ KEPE)d

- /too K(t)dt; — [— /: K(t1) dtl} P(t2)

[ e
— [T K@ | [T K| Po)
_ /t °° { : K(t) dtl} (K (t2) + K (t2) P(t)] diz. (2.5)
Denote
M0 = [ K()dn,
M) = [ K = [T [T K dn| Kz

Then (2.4) becomeB(t) = —Ma(t) — [ K (t1)P(t1) dt1 while (2.5) may be rewritten as

(1+ M) P) = ~3a() = Mo~ [ | [~ Kt s K(e2)Ple) o (2.6)
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This scheme may be formally repeated. Mj(t) = [°° Mo (t3) K (t3) dts. When the last term of (2.6)
is integrated by parts, one gets

(I + My(t)) P(t) = —Ma(t) — Ma(t) — [—Mz(tg)P(tg)];j:t + /too — M>(t3) P (t3) dt3
=~ My(t) ~ Maft) = MaOP() ~ | Mt (1) + K(t2)P(t2)] s
= —M;j(t) — M>o(t) — M3(t) — Mo(t)P(t) — /too Mo (t3) K (t3) P(t3) dts,
that is,
(I + Ma(t) + Ma(t)) P(t) = —Mi(t) — Mo(t) — M3(t) — /too Mo (t3) K (t3) P(t3) dts.

m iterations of this scheme lead formally to the integral equation

m—1 m e’
(I + Z MZ@)) P(t) = - ZMZ(t) - / Mm—l(tm)K(tm)P(tm) dtm (2'7)
=1 =1 ¢
with
M (t) = /t T M) K () dty (=1, ...m, 2.8)

with My(t) = 1. If the M,(t)’s are small for large values of I + Z;T:_ll M,(t) is eventually invertible.
In this case we denote for short

-1

m—1 m
ﬂ0:<1+§:MNO , V(t) = 5(t) ) M(t).

/=1 (=1

Then, the integral equation (2.7) can be written as

P(t) = =V (t) — S(t) /t - Mo —1(tm) K () P(t) Aty (2.9)
or symbolically as

P=—-V—L[P] (2.10)

with the integral operator

MHWZSwémMWNmK%MWMWW
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Moreover, note that i is a solution of (2.10) it also satisfies
P=-V L[~V ~L[P]] = -V + L[V] — L?[P]
and by repeated iterations it is also a solution of
r—1
P=> (-1 V] + (-1 [P, LOV] =V.
v=0
3. Asymptoticintegration

In this section we show that our formal scheme indeed leads to an actual asymptotic solution of
Eqg. (1.3) under suitable assumptions. First we formulate an abstract criterion and in the next step we
extract some explicit conditions on the two parameters in our scheme,

n t "
R= (r®)y and K(t)= (Tjk(t) exp /to O — Aj))jlkﬂ.
Proposition. Let D(t), R(t) € Cla, o), K(t) defined by(2.2) and M,(¢) defined by2.8). If
Myt) — 0 ast—o0,£=1,2,...,m—1, 3.1
M,,_1(t)K () € L*, (3.2)

for some integern then the integral equatiof?.7) possesses a unique solutidt{t) € C1[a, o) for
someuq, such thatP(t) — 0ast — oo.

Proof. Suppose thaiP(t) is indeed a bounded solution of (2.7) @[a, c0). According to assump-
tion (3.1),M,(t) — Ofor¢ =1,...,m — 1 and by (3.2), alsd/,,,(t) = [,”° My,—1(tm)K (t) dty, — O
ast — oo. Note that forl = 1,...,m — 1 no absolute integrability is involved. It follows that
1 +ZT:‘11 M,(t) is an invertible matrix ond, oo) for some sufficiently large, the integral equation (2.7)
may indeed be written as (2.9) wiih(t) — 0, S(t) — I. With a suitable norm, sayP|| = >~ > |p;«|,

PO < IV©| + 15| / Mot () K () || P )| Wl (3.3)

For any bounded matrix valued functiof(t) let [||Al|[ = suR, . [A®)]l. (3.3) holds for every,
a < t < oo, therefore

P IV S [ 13 -sCend B ] ) 11 (3.4)
SinceM,,_1(t)K(t) € L*, then for a givers, 0 < s < 1, we can choose large enough such that

1151l / Mo 1(to) K (t)|| At < 5 < L. (3.5)
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Let us fix this value of: for the rest of this work. Then by (3.4)

1P < W
1—s

The proof follows now by a standard fixed point argument. Take9< 1 and leta be chosen so that
(3.5) holds. Define the sequence

Po=V, P=V+IL[P_1], j=12,....
Then

1Pia(®) = PO < [|LLP; — Pi-al|| < s[l[P; — Pj-alll,
and also

[Pj1 = Billl < sll[Pj — Pjalll
Hence, the sequendg;(t) converges uniformly or’'[a, c0) to a limit function P(t). It is evident that
P € Cla,00) and it is the unique solution of the integral equation (2.7). Consequently,PalsoC?.
SinceV (t) — 0, S(t) — I, it follows from inequality (3.3) that

tll_}hg@ P(t)=0.

Note that once the existence 6ft) is established, a more specific estimate may be obtained. By
Gronwall’s inequality the integral inequality (3.3) implies

1P < [Vl + 15Ol [ IMna@E@VEl exp( [ 101 ]1S] ¢ ) ér. 0

This criterion has some meaning evenifior= 1, i.e., if it is applied directly to Eq. (2.4). All one has
to assume ig((t) € L*, namely

el fora,B=1,...,n, a#0.
In comparison, Levinson’s theorem requirgg < Liforala,f=1,...,n.

The essence of this paper is to give reasonable conditions under which assumptions (3.1) and (3.2)
hold and so the solutions of Eq. (1.3) have nice asymptotic representations. Of course, we wish that our
conditions will extend other ones which are available in the literature. We discuss a relatively simple
situation, when in Eq. (2.7) we take = 2, namely Eq. (2.6):

[+ My(t)] P = — Ma(t) — Ma(t) — /t " Mi(t2) K (t2) P(t5) diz. (3.6)

The asymptotic solution of type (1.12) works well when the differences of the eigenvaliigs)are
imaginary or close to the imaginary axis.
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Theorem 1. Letforalla # 6, a,6=1,...,n,

‘Re /t:()\a(s) ~ As(s)) ds

< B, a<ty t<oo,

whereB is a honnegative constant,

Tap (t)
As(t) = Aalt)

|: Tap (t)
Aa(t) = Aa(t)

and for all & # 3,

el

Then a fundamental solution of Eg..3)is given by(1.12)

— 0 ast — oo,

]/ e LYa, o),

dtl) lra(t)| € LYa, o0).

Y = exp( " Ds) ds) (I + P(t))

to

with P € CY[a, o0), P(t) — 0ast — oo anddet(l + P)(t) = 1 on[a, o).

351

(3.7)

(3.8)

(3.9)

(3.10)

Proof. Our aim is to show that assumptions (3.1) and (3.2) of the proposition, nakigly) — O,
M1(t)K(t) € L[a,o0), hold for Eq. (3.6). The relevant matrices and their respective elements are

n

K(t) = o ) R(t)D(t) = (raﬁ(t) eXp{/t:(Aﬁ(S) N 0) dsD ,

a,f=1

My(t) = /t T K () dty = ( /t T ras(t) exp[ /:(Aﬁ(s) —Aa(s)) ds} dtl) :Bl,
M) = [ MK () e

Recall thatK', M are off-diagonal matrices sind@is such.

Now we integrate by parts the elementsidf() which will be denoted, for shorf}/ ,3:

My () = /t (i) exp[ /t :1 (Aa(s) = Aa(9)) ds} dts

_ [ rap(ta)
t Ag(te) — Aalta)

—Taﬁ—(tl) h s) — s)) ds
~ st — Aa(t) EXF’( /t (A(s) — Aa(s)) d

t1
(1) = ha(t2) exp] [ (As(s) = Aol | ey

o
tlt)




352 U. Elias and H. Gingold / Asymptotic integration of almost diagonal systems

By (3.7) and (3.8) the integrated term vanishes at the uppertimitoco. So

t
My a(t) = % exp /t (A3(s) — Aa(s)) ds
o) Ta !/ "ty
_/t {—)\g(tl)ﬁ—(t)l\l(tl)] exp[/t0 (Ag(s) — Aa(s)) ds} dtq. (3.11)

By another application of (3.7) the elementsidf are bounded by

[Mi,ap(t)] < (\#ﬁ)a(t) +/tw’[w73ﬁf%y

Therefore assumptions (3.8), (3.9) imply thd{(t) — 0 ast — oo.
Next we turn to the kernel matrix of (3.6)/1(¢) K (¢). Its elements are estimated by

dtl) expB.

|((MLOK (1)) o5 < DI M0 (O] K55(6)]
j=1

sl [

<Z(

JFa.p

dtl) |r;5(t)|(expB)>?.

Due to (3.8) the first term in the sum is

raj (1) ‘g/tooH raj(ta) ]/

INGESW0 N — ) | o

so M1 K € LY[a, o) follows from (3.10). So condition (3.2) of the proposition is verified and the exis-
tence of the appropriat is proved.
According to (2.1), [ + P) = P' = & 1R®(I + P), so by Abel's formula

det(l + P)(t) = det( + P)(c0) exp(/t trace(cp—lR@)) =1,

since tracep~1R®) = traceR) = 0.
Note that, if in additionR(t) — 0 ast — oo, then alsaP’ = $~1RH(I + P) = K(I + P) — 0 since
|Kjk| < |rji|expB — 0. O

Remarks. On the face of it, it looks as if Theorem 1 fails if the difference of two eigenvalues is zero at a
point of the interval {p, c0). However a close examination of the conditions that guarantee the validity of
Theorem 1 reveals that a proper interpretation of the relations (3.8), (3.9) and (3.10) leads to a pleasant
surprise. If a difference.s — A, becomes zero at a poiti, we have to worry only about the behaviour

of 743, rgo Nearti. The theorem holds if we interpret the quotients /(Mg — Aa), 78a/(A\s — Aa) @S

limits ast — t; and these quotients satisfy the assumptions (3.8), (3.9) and (3.10). By doing so we of
course allow the quotients to possess removable singularities or some mild singulatitigdaie that
Theorem 1 holds even X, = A3 for somea # (3 provided thatr,3 = rg, = 0.
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Whenr,3/(Aa — Ag) is monotone, (3.10) becomes

Tas(t)rsr(t)
Aa(t) = Ag(t)
Naturally, our assumptions (3.8), (3.9) and (3.10) (or (3.12)) should be compared with the assumptions

(1.8), (1.9) and (1.11) of [3]. The advantage of Theorem 1 over [3] is our reduced number of assumptions.
It is essential in the proof of [3] that

€ LYa,), a#p3, B+#k. (3.12)

o I foralla# 5, j 4k
N — Ak

i.e., @® — n)? conditions; in contrast, our analog (3.8) consists of amy— n conditions. Similarly,
(1.11) contains:*(n — 1) conditions while (3.10) has only(n — 1)2.

4. Some examples

We start with a simple example that demonstrates the difference between our result and the theory
in [3]. Consider the equation

i 0 O 0 0 ci3
02 0|+ 0 0 et
0O 0 itV cz1 ¢z O

for some largeo, wherec;;, are constants;1/2 < 6 < 0 andy > 2§ 4+ 1. Theorem 1.7.1 of [3] cannot

be applied naively to this example since it requires condition (1.11) to hold. However (1.11) fails since
(M — X2)"tR?)11 ~ t% ¢ L. On the other hand (3.10) (or (3.12)) do hold: for large valuesthe
eigenvalues are distinct and

Y = Y, to<t< oo, (4.1)

M2k _ "3k 25— o gt
M= A1l — A3 '

since @ — v < —1. (3.8) also holds since

712 3 5=

=0, R
)\1—)\2 )\1_)\3

andé — v < —6 — 1 < 0. Of course this simple example can be treated also by other methods.
Here are two examples that demonstrate the range of applicability of Theorem 1. Given the system

itP 0 O 0 c1ot™12  cqat™is
Y = 0 it! 0 |+ [ ot 0 co3t?B || Y, to<t< oo, 4.2)
0 0 it c3tW3l  cgot™32 0
wherec;;, are constanty; < ¢ < r < 0,
w1z, w21 < ¢ <0, (4.3)

w13, W31, w3, w32 < r < 0.
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While (4.1) has completely distinct diagonal elements, the diagonal elements of (4.2) coaleseeas
Theorem 1 applies to (4.2). Condition (3.7) is obviously satisfied. Observethat\, = O(t?) while

A1 — A3, A2 — A3 = O(t"). Conditions (3.8) and (3.9) are satisfied by virtue of (4.3). (3.10) (or (3.12)) is
satisfied if

w12 + wa1, w12 + w3z, w1 + w31 < ¢ — 1,
andw; + wy; < r — 1 for the other indiceg # k # [, namely
w13 + W31, W13 + W32, W31 + W12, W23 + W31, W23 + w3z, w32 + wpy < 7 — 1.

On the other hand (1.8), (1.9) and (1.11) guarantee by [3] that the system (4.2) is almost diagonal only if
wjr < r < 0andw;, +wy < r — 1holds forall j # k # 1.
The other example is

it? 0 O 0 0 c3t™13
0O it 0|+ 0 0 co3tV 3
0 0 i c3tW3l  c3ot™32 0

with two eigenvalues of the diagonal matrix being identigat; 0, w;;, are negative constants such that
—1l<w;, <0and

Y = Y, to<t< oo, (4.4)

wir +wy < =1 forj #k #1L (4.5)

Conditions (3.8) and (3.9) are satisfied by virtuepok 0 andw,; < 0. Moreover, (3.10) is satisfied
thanks to condition (4.5). Hence Theorem 1 applies. It is noteworthy that our theorem is valid no matter
how close to zero is one or some of the valugs are, as long as (4.5) is satisfied.

Levinson’s methods cannot be applied to system (4.4). This is so on two counts. The first count is that
the off diagonal terms are not ib'. The second count being that two elements of the diagonal matrix
are identical and therefore a continuously differentiable invertible transformation that diagonalizes the
system cannot be guaranteed. Because of same reasons the results in [5] cannot be applied. The methods
in [3,10,11] cannot conclude either that the system is almost diagonal. Moreover, techniques of block-
diagonalization for nonanalytic systems of differential systems, e.g., [9], could lead to the asymptotic
integration of our example, but they cannot guarantee that our system is almost diagonal.

Finally we show that Theorem 1 is best possible in the following sense. We demonstrate that (3.10)
(or (3.12)) is necessary for system (1.3) to be almost diagonal, i.e., for approximation (1.12) to hold.
Consider

Y’:K(i) Ei)+<toq topﬂy (4.6)

with p, g > 0. (3.12) requires thatioro1 /(A1 — Ap) = t7P71/2i € L' i.e.,a=p+q> 1. We show that
if on the contraryp < 1 then representation (1.12) of a fundamental solution, namely

Y () = exp / t ((') f’i ) ds (I + P(8)) 4.7)

is impossible.
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Levinson’s theorem guarantees an asymptotic approximation

Y(t) = (I +Q()) exp( / t (”1(§3) uz?S) ) ds) , (4.8)

whereus o(t) = £iv/1 — t— are the eigenvalues @ + R. If both (4.7) and (4.8) hold for a fundamental
solution, then

o
exp <(') ﬂ) ds (I + P@®) (I + Plto))

t 0 1
= (I + Q(t)) ex (”1(3) )d I+ Q(t
(r+Qmyexe | (57 ) ) & (1+Q00)
with someP(t), Q(t) — 0 ast — oo. Comparing the (1, 1)-term on each side of the matrix identity
above yields

eif:o(flJr\/lfs—O‘)ds i f:o(lJm/lfs—O‘)ds

(1+pua(t) = A1+ qu(®)) + Bqio(t) e (4.9)

with some constantd, B. Herep;;, ¢;; — 0 and

t —Q

S

t
—14+V1—-s5%ds=— —— ds - —0c0 ast — o
/to( ) to 1++vV1—5"2

if o < 1. The left-hand side of (4.9) satisfies lim{p,1(t)) = 1 ast — oo. If A = 0 then evidently
we have a contradiction as the right-hand side of (4.9) tends to A.# 0 then the real part of the
right-hand side would have extreme values arbitrary closg|#)], evidently a contradiction. Thus (4.6)
is not almost diagonal without assumption (3.12).

5. Moreintegrations by part

Let us now modify Theorem 1 by additional integrations by parts of (3.11). Define successively a
sequence of generalized derivatives

U )

m], m:O,l,....

0 = 0 = |

Then (3.11) may be written as

t1

Miaa®) = [ o) exe| [ (o) — Aa(s) o]

0]
__ta® T e -
T Aalt) — As(t) EXD[/tO (Ag(s) = Aa(s)) ds}

+ /too r(%(tl) expM:l (As(s) — Ma(s)) ds] oty
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(Note that the denominator @fxl% is Ao — Ag and not fg — A\,)!) By ¢ repeated integrations by parts
and assumptions which ensure the vanishing of the integrated tetins-ato, we get

¢ [m]
rog () t
M) =" m exp[ /to (A(5) = Aa(s)) ds}

m=0
% t1
+ /t () exp[ /t 0 (Aa(s) — Aa(9)) ds] dty.
Analogously with the previous proof, we get

Theorem 2. Let/ be a fixed integer. Assume th@&t7) holds and for allo, 3 = 1,...,n, a # G,

72 () 0 ast =0,....0 5.1
mﬁ ast — oo, m=0,...,4, ()
[4] ’
er1 _ [ Tas® 1
Tab [Aa(t)—xﬁ(t)] & Floo) (5:2)
and fork # 3,
([ Me) dhs )t € 20 00). (5.3)

Then a fundamental solution of Eg..3)is given by(1.12)

Outline of proof. As in the proof of Theorem 1, we show also here that by (5.1), (5.2) and (5.3),
Mi(t) — 0 ast — oo and M;(t)K(t) € L[a,o0). Hence the small perturbatiadf(t) is obtained as the
solution of (3.6).
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