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Abstract. A theorem of asymptotic integration is proven for linear systems of differential equations. The theorem is designed to
fit a specialized family of differential systems which occur frequently in quantum mechanics. It is shown to be best possible in
a certain sense. The method provided differs from an established trend that transforms the differential system, via a preparation
theorem, to a differential system, where the coefficient matrix is the sum of a diagonal matrix and a remainder matrix that must
be absolutely integrable at infinity. In this work the fundamental matrix solution is given as a product of a diagonal matrix and
a perturbation of the identity matrix. The perturbation of the identity matrix being on the right in the product rather than on the
left as is common in the literature.

1. Introduction

The asymptotic theory ofn-dimensional linear differential systems

Y ′ = A(t)Y , (1.1)

whereA, Y aren × n matrix functions asks for representation of fundamental solutionsY (t) of (1.1)
in the vicinity of t = ∞. If A = A(t) is a constant matrix, then a fundamental solutionY (t) of (1.1) is
given by

Y (t) = Qexp(Jt), (1.2)

whereQ−1AQ = J , J is a Jordan matrix andQ is a constant invertible matrix. The representation
(1.2) provides all the “local” (namely, ast → ∞) essential asymptotic information of the fundamental
matrix Y (t) as well as all the essential global information (namely for allt) for Y (t). Moreover, it also
shows in a transparent manner how the properties ofA, its eigenvalues and their algebraic and geometric
multiplicities affect qualitative properties ofY (t).

However, whenA(t) genuinely depends on a real or a complex variablet, a representation of a funda-
mental matrixY (t) analogous to (1.2) and which provides all the local and global information ofY (t)
is not available. The “theory of asymptotic integration” of (1.1) attempts to remedy this situation. Its
importance can hardly be overestimated, as the asymptotic behaviour of solutions of nonlinear problems
require quite often asymptotic integration of a linearized problem.

WhenA(t) is meromorphic att = ∞, the “local theory” is in satisfactory state, although the global
theory has many outstanding problems unresolved, notably the “connection problem”. See, e.g., [17–20].

0921-7134/02/$8.00 2002 – IOS Press. All rights reserved



344 U. Elias and H. Gingold / Asymptotic integration of almost diagonal systems

The Hukuhara–Turritin algorithm provides a representation ofY (t) in certain sectors of the complex
plane. WhenA(t) is meromorphic at infinity, it is also possible to carry out the asymptotic integration in
sectors of the complex plane by a method of triangularization that can be extracted from [9]. WhenA(t)
ceases to be meromorphic, the theory of asymptotic integration is much more difficult and it requires
new techniques.

The asymptotic integration of a perturbed system of the form

Y ′ =
(
D(t) +R(t)

)
Y , (1.3)

D(t) = diag
{
λ1(t), . . . ,λn(t)

}
, R(t) =

(
rjk(t)

)n
j,k=1, (1.4)

is widely discussed in the literature. Since a fundamental solution of the unperturbed equationY ′ = DY
is

Φ(t) = exp
(∫ t

t0

D(s) ds
)

,

one may hope that an asymptotic representation of a fundamental solution of (1.3) be given by

Y (t) =
(
I +Q(t)

)
exp
(∫ t

t0

D(s) ds
)

(1.5)

with Q(t) → 0 ast → ∞. Some of the early theorems, like [12], provided asymptotic integration under
various assumptions. One of the most simple conditions is|Re(λj(t) − λk(t))| � c for all j �= k and
some positive constantc.

The ability to integrate (1.3) was substantially enhanced by Levinson [14] who assumed that
R ∈ L1(a,∞) plus “dichotomy conditions”:for each pair of integersj �= k and for all s and t such
that a � s < t < ∞, either∫ t

s
Re(λj − λk) dτ � K1 (1.6)

or ∫ t

s
Re(λj − λk) dτ � K2, (1.7)

whereK1 andK2 are some constants.
Levinson utilized an extra similarity transformation which rediagonalizesD + R. This was further

enhanced by Harris and Lutz [10,11] who showed how to transform (1.3) into a system

Y ′
N =

(
DN (t) +RN (t)

)
YN ,

via repeated diagonalizationsY0 ≡ Y , Yj−1 = (I +Qj)Yj , j = 1, . . . ,N , so thatQj(∞) = 0 and so that

Y (t) =
N∏

j=1

(
I +Qj(t)

)
exp
(∫ t

DN (s) ds
)
.



U. Elias and H. Gingold / Asymptotic integration of almost diagonal systems 345

However,DN (t) does not coincide necessarily withD(t) which consists of the eigenvalues of the unper-
turbed system.

It turns out that quotients made of certain elements ofR(t) and certain differencesλj − λk play a
crucial role in the asymptotic integration. If

1
λj(t) − λk(t)

R(t) → 0 ast → ∞, (1.8)

(
1

λj(t) − λk(t)
R(t)

)′
∈ L1[a,∞), (1.9)

for all j,k = 1, . . . ,n, j �= k, then

Y (t) =
(
I +Q(t)

)
exp
(∫ t

D̃(s) ds
)

, (1.10)

whereD̃ consists of the eigenvalues ofD + R. See [3]. Note that these generalizations of Levinson’s
theorem actually use repeated transformations to reduce the given equation to Levinson’s form and then
apply Levinson’s theorem. See also [1,13,16].

While (1.5) and (1.10) seem similar, there is an essential difference between them. In (1.5) there appear
the eigenvalues of the original diagonalD and so they preserve the original physical meaning, which is in
contrast to (1.10). In the setting of quantum mechanics, the “physical meaning” of the eigenvalues of the
coefficient matrixA(t) are of great importance. They are proportional to the energy levels of a quantum
mechanical system. Whether the representation (1.5) holds or not makes then a substantial difference.
Another drawback of (1.10) is that the calculation of the eigenvalues ofD̃ = D + R may be a difficult
task.

One way to overcome this difficulty is suggested by Eastham in [3]. It is shown that if in addition to
(1.8) and (1.9) also

1
λj(t) − λk(t)

R2(t) ∈ L1[a,∞), j,k = 1, . . . ,n, j �= k, (1.11)

is satisfied then the solution is given as in (1.5). It was observed also in [5] that under appropriate
circumstances̃D(t) can be chosen to be asD(t).

It is also observed that the diagonal elements and the off-diagonal elements ofR(t) play different roles.
Hence it makes sense to place all diagonal elements of Eq. (1.3) inD(t) while the perturbation termR(t)
consists only of off-diagonal terms. This convention will be assumed throughout the rest of our work.

The literature is abundant of representation of fundamental solutions of Eq. (1.3) as in (1.5), namely,
a product of two matrices such that the diagonal matrixΦ = exp(

∫ t
t0
D(s) ds) is on the right and the

matrixI +Q(t), which is a perturbation of the identity matrix, is on the left. In this work we look, on the
contrary, for a solutionY (t) of (1.3) that is represented asY = Φ(I + P ), i.e.,

Y (t) = exp
(∫ t

D(s) ds
)(
I + P (t)

)
(1.12)

with a suitable, still unknown perturbationP such thatP = o(1) ast → ∞.
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The distinction between (1.5) and (1.10) makes it worth while to formulate in analogy to [5], the
following definition, both for representation (1.5) and representation (1.12):

Definition. Let D(t) ∈ C[a,∞) be a diagonal matrix. LetR(t) ∈ C[a,∞) be such that its diagonal
elements are all zero. We say that the system (1.3) is “right almost diagonal” if it possesses an asymptotic
representation (1.12) withP (t) ∈ C[a,∞] and limP (t) = 0 ast → ∞. Similarly, if representation (1.5)
holds, the system (1.3) will be called “left almost diagonal”.

It has been shown in several problems of mathematical physics, see, e.g., [6–8], that a representation
of a fundamental solution as a productΦ(I+P ), where the diagonal matrixΦ is on the left rather than on
the right in the given product, has a merit of its own. Moreover, it is also evident from, e.g., [7], that the
resulting equation forI+P is simpler in form than the equation forI+Q that would have resulted seeking
a representation (I + Q)Φ. Usually, a representationΦ(I + P ) is possible when a special “dichotomy
condition” is satisfied. This situation occurs in the case whereA(t) is anti-Hermitian, which is frequently
encountered in quantum mechanics, see [15]. A main motivation is to gain a better understanding of the
adiabatic approximation theorem in quantum mechanics (“If the Hamiltonian is changed slowly fromH0

to H, the system in a given eigenstate ofH0 goes over into the corresponding eigenstate ofH but does
not make any transitions”), which was originated by [4] and discussed by [2]. See also [6].

The purpose of this study is to present conditions on a special family of systems of differential equa-
tions (1.1), which will lead to an asymptotic approximation of a fundamental solution of the form
Φ(I + P ). While doing so, a self contained proof of a theorem of asymptotic approximation, guaran-
teeing the existence of a perturbation matrixP , having certain desired properties, will be given.

The method provided differs from an established trend that transforms the differential system, via a
preparation theorem, to a differential system, where the coefficient matrix is the sum of a diagonal matrix
and a remainder matrix that must be absolutely integrable at infinity. Our method of proof involves the
conversion of a differential equation forP (t) into an integral equation in a manner to be detailed in
Section 2. It will be shown that our method will lead to a theorem of asymptotic integration which is best
possible in a certain sense. Conditions will be given in Section 3, which will guarantee that the system
(1.3) is right almost diagonal. Examples will be given that are amenable to our theorem to which the
results of [3,5,10,11,14] do not apply.

2. Some formal calculations

Substitution ofY = Φ(I + P ) into (1.3) withΦ′ = DΦ leads to

DΦ(I + P ) + Φ(I + P )′ = (D +R)Φ(I + P ),

i.e.,

P ′ = Φ−1RΦ(I + P ). (2.1)

Let

K(t) = Φ−1RΦ = exp
(
−
∫ t

t0

D(s) ds
)
R(t) exp

(∫ t

t0

D(s) ds
)
. (2.2)
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Here

R(t) =
(
rjk(t)

)n
j,k=1, K(t) =

(
rjk(t) exp

∫ t

t0

−(λj − λk) dτ
)n

j,k=1
.

Then

P ′ = K +KP. (2.3)

Assuming thatP (∞) = 0, let us begin a formal integration of (2.3) as

pjk(t) =
∫ t

∞
rjk(s) e

−
∫ s

t0
(λj−λk) dτ

ds+
∫ t

∞

n∑
h=1

rjh(s) e
−
∫ s

t0
(λj−λh) dτ

phk(s) ds,

which may be written as

P (t) = −
∫ ∞

t
K(t1) dt1 −

∫ ∞

t
K(t1)P (t1) dt1. (2.4)

Next we integrate by part the last term of (2.4):

P (t) = −
∫ ∞

t
K(t1) dt1 −

∫ ∞

t
K(t1)P (t1) dt1

= −
∫ ∞

t
K(t1) dt1 −

[
−
∫ ∞

t2

K(t1) dt1

]
P (t2)

∣∣∣∣∞
t2=t

+
∫ ∞

t

[
−
∫ ∞

t2

K(t1) dt1

]
P ′(t2) dt2

= −
∫ ∞

t
K(t1) dt1 −

[∫ ∞

t
K(t1) dt1

]
P (t)

−
∫ ∞

t

[∫ ∞

t2

K(t1) dt1

][
K(t2) +K(t2)P (t2)

]
dt2. (2.5)

Denote

M1(t) =
∫ ∞

t
K(t1) dt1,

M2(t) =
∫ ∞

t
M1(t2)K(t2) dt2 =

∫ ∞

t

[∫ ∞

t2

K(t1) dt1

]
K(t2) dt2.

Then (2.4) becomesP (t) = −M1(t) −
∫∞
t K(t1)P (t1) dt1 while (2.5) may be rewritten as

(
I +M1(t)

)
P (t) = −M1(t) −M2(t) −

∫ ∞

t

[∫ ∞

t2

K(t1) dt1

]
K(t2)P (t2) dt2. (2.6)
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This scheme may be formally repeated. LetM3(t) =
∫∞
t M2(t3)K(t3) dt3. When the last term of (2.6)

is integrated by parts, one gets

(
I +M1(t)

)
P (t) = −M1(t) −M2(t) −

[
−M2(t3)P (t3)

]∞
t3=t +

∫ ∞

t
−M2(t3)P ′(t3) dt3

= −M1(t) −M2(t) −M2(t)P (t) −
∫ ∞

t
M2(t3)

[
K(t3) +K(t3)P (t3)

]
dt3

= −M1(t) −M2(t) −M3(t) −M2(t)P (t) −
∫ ∞

t
M2(t3)K(t3)P (t3) dt3,

that is,

(
I +M1(t) +M2(t)

)
P (t) = −M1(t) −M2(t) −M3(t) −

∫ ∞

t
M2(t3)K(t3)P (t3) dt3.

m iterations of this scheme lead formally to the integral equation

(
I +

m−1∑
�=1

M�(t)

)
P (t) = −

m∑
�=1

M�(t) −
∫ ∞

t
Mm−1(tm)K(tm)P (tm) dtm (2.7)

with

M�(t) =
∫ ∞

t
M�−1(t�)K(t�) dt�, � = 1, . . . ,m, (2.8)

with M0(t) ≡ I. If theM�(t)’s are small for large values oft, I +
∑m−1

�=1 M�(t) is eventually invertible.
In this case we denote for short

S(t) =

(
I +

m−1∑
�=1

M�(t)

)−1

, V (t) = S(t)
m∑

�=1

M�(t).

Then, the integral equation (2.7) can be written as

P (t) = −V (t) − S(t)
∫ ∞

t
Mm−1(tm)K(tm)P (tm) dtm, (2.9)

or symbolically as

P = −V − L[P ] (2.10)

with the integral operator

L[P ](t) = S(t)
∫ ∞

t
Mm−1(tm)K(tm)P (tm) dtm.
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Moreover, note that ifP is a solution of (2.10) it also satisfies

P = −V − L
[
−V − L[P ]

]
= −V + L[V ] − L2[P ],

and by repeated iterations it is also a solution of

P =
r−1∑
ν=0

(−1)ν−1Lν [V ] + (−1)r−1Lr[P ], L0[V ] = V.

3. Asymptotic integration

In this section we show that our formal scheme indeed leads to an actual asymptotic solution of
Eq. (1.3) under suitable assumptions. First we formulate an abstract criterion and in the next step we
extract some explicit conditions on the two parameters in our scheme,

R =
(
rjk(t)

)n
j,k=1 and K(t) =

(
rjk(t) exp

∫ t

t0

(λk − λj)
)n

j,k=1
.

Proposition. LetD(t),R(t) ∈ C[a,∞), K(t) defined by(2.2)andM�(t) defined by(2.8). If

M�(t) → 0 ast → ∞, � = 1, 2,. . . ,m− 1, (3.1)

Mm−1(t)K(t) ∈ L1, (3.2)

for some integerm then the integral equation(2.7) possesses a unique solutionP (t) ∈ C1[a,∞) for
somea, such thatP (t) → 0 ast → ∞.

Proof. Suppose thatP (t) is indeed a bounded solution of (2.7) inC[a,∞). According to assump-
tion (3.1),M�(t) → 0 for � = 1, . . . ,m− 1 and by (3.2), alsoMm(t) =

∫∞
t Mm−1(tm)K(tm) dtm → 0

as t → ∞. Note that forl = 1, . . . ,m − 1 no absolute integrability is involved. It follows that
I+

∑m−1
�=1 M�(t) is an invertible matrix on [a,∞) for some sufficiently largea, the integral equation (2.7)

may indeed be written as (2.9) withV (t) → 0,S(t) → I. With a suitable norm, say‖P‖ =
∑∑ |pjk|,

∥∥P (t)
∥∥ �

∥∥V (t)
∥∥+

∥∥S(t)
∥∥ ∫ ∞

t

∥∥Mm−1(tm)K(tm)
∥∥∥∥P (tm)

∥∥ dtm. (3.3)

For any bounded matrix valued functionA(t) let |||A||| = sup[a,∞) ‖A(t)‖. (3.3) holds for everyt,
a � t < ∞, therefore

|||P ||| � |||V ||| + |||S|||
(∫ ∞

a

∥∥Mm−1(tm)K(tm)
∥∥dtm

)
|||P |||. (3.4)

SinceMm−1(t)K(t) ∈ L1, then for a givens, 0 � s < 1, we can choosea large enough such that

|||S|||
∫ ∞

a

∥∥Mm−1(tm)K(tm)
∥∥ dtm � s < 1. (3.5)
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Let us fix this value ofa for the rest of this work. Then by (3.4)

|||P ||| � |||V |||
1− s

.

The proof follows now by a standard fixed point argument. Take 0� s < 1 and leta be chosen so that
(3.5) holds. Define the sequence

P0 = V , Pj = V + L[Pj−1], j = 1, 2,. . . .

Then∥∥Pj+1(t) − Pj(t)
∥∥ �

∥∥L[Pj − Pj−1]
∥∥ � s|||Pj − Pj−1|||,

and also

|||Pj+1 − Pj||| � s|||Pj − Pj−1|||.

Hence, the sequencePj(t) converges uniformly onC[a,∞) to a limit functionP (t). It is evident that
P ∈ C[a,∞) and it is the unique solution of the integral equation (2.7). Consequently, alsoP ∈ C1.
SinceV (t) → 0,S(t) → I, it follows from inequality (3.3) that

lim
t→∞

P (t) = 0.

Note that once the existence ofP (t) is established, a more specific estimate may be obtained. By
Gronwall’s inequality the integral inequality (3.3) implies

∥∥P (t)
∥∥ �

∥∥V (t)
∥∥+

∥∥S(t)
∥∥ ∫ ∞

t

∥∥Mm−1(τ )K(τ )
∥∥∥∥V (τ )

∥∥ exp
(∫ τ

t
‖Mm−1K‖‖S‖dν

)
dτ. �

This criterion has some meaning even form = 1, i.e., if it is applied directly to Eq. (2.4). All one has
to assume isK(t) ∈ L1, namely

rαβ(t) e
−
∫ t

t0
(λα−λβ ) dτ ∈ L1 for α,β = 1, . . . ,n, α �= β.

In comparison, Levinson’s theorem requiresrαβ ∈ L1 for all α,β = 1, . . . ,n.
The essence of this paper is to give reasonable conditions under which assumptions (3.1) and (3.2)

hold and so the solutions of Eq. (1.3) have nice asymptotic representations. Of course, we wish that our
conditions will extend other ones which are available in the literature. We discuss a relatively simple
situation, when in Eq. (2.7) we takem = 2, namely Eq. (2.6):

[
I +M1(t)

]
P = −M1(t) −M2(t) −

∫ ∞

t
M1(t2)K(t2)P (t2) dt2. (3.6)

The asymptotic solution of type (1.12) works well when the differences of the eigenvalues ofD(t) are
imaginary or close to the imaginary axis.
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Theorem 1. Let for all α �= β, α,β = 1, . . . ,n,∣∣∣∣Re
∫ t

t0

(
λα(s) − λβ(s)

)
ds
∣∣∣∣ � B, a � t0, t < ∞, (3.7)

whereB is a nonnegative constant,

rαβ(t)
λβ(t) − λα(t)

→ 0 ast → ∞, (3.8)

[
rαβ(t)

λα(t) − λβ(t)

]′
∈ L1[a,∞), (3.9)

and for allk �= β,(∫ ∞

t

∣∣∣∣[ rαβ(t1)
λα(t1) − λβ(t1)

]′∣∣∣∣ dt1)∣∣rβk(t)
∣∣ ∈ L1[a,∞). (3.10)

Then a fundamental solution of Eq.(1.3) is given by(1.12),

Y = exp
(∫ t

t0

D(s) ds
)(
I + P (t)

)
with P ∈ C1[a,∞), P (t) → 0 ast → ∞ anddet(I + P )(t) ≡ 1 on [a,∞).

Proof. Our aim is to show that assumptions (3.1) and (3.2) of the proposition, namelyM1(t) → 0,
M1(t)K(t) ∈ L[a,∞), hold for Eq. (3.6). The relevant matrices and their respective elements are

K(t) = Φ−1(t)R(t)Φ(t) =
(
rαβ(t) exp

[∫ t

t0

(
λβ(s) − λα(s)

)
ds
])n

α,β=1
,

M1(t) =
∫ ∞

t
K(t1) dt1 =

(∫ ∞

t
rαβ(t1) exp

[∫ t1

t0

(
λβ(s) − λα(s)

)
ds
]

dt1

)n

α,β=1
,

M2(t) =
∫ ∞

t
M1(t2)K(t2) dt2.

Recall thatK, M1 are off-diagonal matrices sinceR is such.
Now we integrate by parts the elements ofM1(t) which will be denoted, for short,M1,αβ:

M1,αβ(t) =
∫ ∞

t
rαβ(t1) exp

[∫ t1

t0

(
λβ(s) − λα(s)

)
ds
]

dt1

=
∫ ∞

t

rαβ(t1)
λβ(t1) − λα(t1)

(
λβ(t1) − λα(t1)

)
exp
[∫ t1

t0

(
λβ(s) − λα(s)

)
ds
]

dt1

=
rαβ(t1)

λβ(t1) − λα(t1)
exp
(∫ t1

t0

(
λβ(s) − λα(s)

)
ds
∣∣∣∣∞
t1=t

)

−
∫ ∞

t

[
rαβ(t1)

λβ(t1) − λα(t1)

]′
exp
[∫ t1

t0

(
λβ(s) − λα(s)

)
ds
]

dt1.
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By (3.7) and (3.8) the integrated term vanishes at the upper limitt1 = ∞. So

M1,αβ(t) =
rαβ(t)

λα(t) − λβ(t)
exp

∫ t

t0

(
λβ(s) − λα(s)

)
ds

−
∫ ∞

t

[
rαβ(t1)

λβ(t1) − λα(t1)

]′
exp
[∫ t1

t0

(
λβ(s) − λα(s)

)
ds
]

dt1. (3.11)

By another application of (3.7) the elements ofM1 are bounded by

∣∣M1,αβ(t)
∣∣ � (∣∣∣∣ rαβ(t)

λβ(t) − λα(t)

∣∣∣∣+ ∫ ∞

t

∣∣∣∣[ rαβ(t1)
λβ(t1) − λα(t1)

]′∣∣∣∣ dt1)expB.

Therefore assumptions (3.8), (3.9) imply thatM1(t) → 0 ast → ∞.
Next we turn to the kernel matrix of (3.6),M1(t)K(t). Its elements are estimated by

∣∣(M1(t)K(t)
)
αβ

∣∣� n∑
j=1

∣∣M1,αj(t)
∣∣∣∣Kjβ(t)

∣∣
�
∑

j �=α,β

(∣∣∣∣ rαj(t)
λj(t) − λα(t)

∣∣∣∣+ ∫ ∞

t

∣∣∣∣[ rαj(t1)
λj(t1) − λα(t1)

]′∣∣∣∣dt1)∣∣rjβ(t)
∣∣(expB)2.

Due to (3.8) the first term in the sum is∣∣∣∣ rαj(t)
λj(t) − λα(t)

∣∣∣∣ � ∫ ∞

t

∣∣∣∣[ rαj(t1)
λj(t1) − λα(t1)

]′∣∣∣∣ dt1,

soM1K ∈ L1[a,∞) follows from (3.10). So condition (3.2) of the proposition is verified and the exis-
tence of the appropriateP is proved.

According to (2.1), (I + P )′ = P ′ = Φ−1RΦ(I + P ), so by Abel’s formula

det(I + P )(t) = det(I + P )(∞) exp
(∫ t

∞
trace

(
Φ−1RΦ

))
≡ 1,

since trace(Φ−1RΦ) = trace(R) ≡ 0.
Note that, if in additionR(t) → 0 ast → ∞, then alsoP ′ = Φ−1RΦ(I + P ) = K(I + P ) → 0 since

|Kjk| � |rjk|expB → 0. �

Remarks. On the face of it, it looks as if Theorem 1 fails if the difference of two eigenvalues is zero at a
point of the interval [t0,∞). However a close examination of the conditions that guarantee the validity of
Theorem 1 reveals that a proper interpretation of the relations (3.8), (3.9) and (3.10) leads to a pleasant
surprise. If a differenceλβ − λα becomes zero at a pointt1, we have to worry only about the behaviour
of rαβ , rβα neart1. The theorem holds if we interpret the quotientsrαβ/(λβ − λα), rβα/(λβ − λα) as
limits ast → t1 and these quotients satisfy the assumptions (3.8), (3.9) and (3.10). By doing so we of
course allow the quotients to possess removable singularities or some mild singularities att1. Note that
Theorem 1 holds even ifλα ≡ λβ for someα �= β provided thatrαβ ≡ rβα ≡ 0.
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Whenrαβ/(λα − λβ) is monotone, (3.10) becomes

rαβ(t)rβk(t)
λα(t) − λβ(t)

∈ L1[a,∞), α �= β, β �= k. (3.12)

Naturally, our assumptions (3.8), (3.9) and (3.10) (or (3.12)) should be compared with the assumptions
(1.8), (1.9) and (1.11) of [3]. The advantage of Theorem 1 over [3] is our reduced number of assumptions.
It is essential in the proof of [3] that

rαβ

λj − λk
∈ L1 for all α �= β, j �= k,

i.e., (n2 − n)2 conditions; in contrast, our analog (3.8) consists of onlyn2 − n conditions. Similarly,
(1.11) containsn4(n− 1) conditions while (3.10) has onlyn(n− 1)2.

4. Some examples

We start with a simple example that demonstrates the difference between our result and the theory
in [3]. Consider the equation

Y ′ =

 i 0 0
0 2i 0
0 0 itγ

+

 0 0 c13

0 0 c23

c31 c32 0

 tδ

Y , t0 � t < ∞, (4.1)

for some larget0, wherecjk are constants,−1/2 < δ < 0 andγ > 2δ + 1. Theorem 1.7.1 of [3] cannot
be applied naively to this example since it requires condition (1.11) to hold. However (1.11) fails since
((λ1 − λ2)−1R2)11 ≈ t2δ /∈ L1. On the other hand (3.10) (or (3.12)) do hold: for large values oft the
eigenvalues are distinct and

r12r2k

λ1 − λ2
≡ 0,

r13r3k

λ1 − λ3
≈ t2δ−γ ∈ L1,

since 2δ − γ < −1. (3.8) also holds since

r12

λ1 − λ2
≡ 0,

r13

λ1 − λ3
≈ tδ−γ

andδ − γ < −δ − 1 < 0. Of course this simple example can be treated also by other methods.
Here are two examples that demonstrate the range of applicability of Theorem 1. Given the system

Y ′ =

 itp 0 0
0 itq 0
0 0 itr

+

 0 c12t
w12 c13t

w13

c21t
w21 0 c23t

w23

c31t
w31 c32t

w32 0

Y , t0 � t < ∞, (4.2)

wherecjk are constants,p < q < r < 0,

w12,w21 < q < 0,
w13,w31,w23,w32 < r < 0.

(4.3)
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While (4.1) has completely distinct diagonal elements, the diagonal elements of (4.2) coalesce ast → ∞.
Theorem 1 applies to (4.2). Condition (3.7) is obviously satisfied. Observe thatλ1 − λ2 = O(tq) while
λ1 − λ3, λ2 − λ3 = O(tr). Conditions (3.8) and (3.9) are satisfied by virtue of (4.3). (3.10) (or (3.12)) is
satisfied if

w12 +w21,w12 + w23,w21 + w31 < q − 1,

andwjk + wkl < r − 1 for the other indicesj �= k �= l, namely

w13 +w31,w13 + w32,w31 + w12,w23 + w31,w23 + w32,w32 + w21 < r − 1.

On the other hand (1.8), (1.9) and (1.11) guarantee by [3] that the system (4.2) is almost diagonal only if
wjk < r < 0 andwjk + wkl < r − 1 holds forall j �= k �= l.

The other example is

Y ′ =

 itp 0 0
0 itp 0
0 0 i

+

 0 0 c13t
w13

0 0 c23t
w23

c31t
w31 c32t

w32 0

Y , t0 � t < ∞, (4.4)

with two eigenvalues of the diagonal matrix being identical,p < 0,wjk are negative constants such that
−1< wjk < 0 and

wjk + wkl < −1 for j �= k �= l. (4.5)

Conditions (3.8) and (3.9) are satisfied by virtue ofp < 0 andwjk < 0. Moreover, (3.10) is satisfied
thanks to condition (4.5). Hence Theorem 1 applies. It is noteworthy that our theorem is valid no matter
how close to zero is one or some of the valueswjk are, as long as (4.5) is satisfied.

Levinson’s methods cannot be applied to system (4.4). This is so on two counts. The first count is that
the off diagonal terms are not inL1. The second count being that two elements of the diagonal matrix
are identical and therefore a continuously differentiable invertible transformation that diagonalizes the
system cannot be guaranteed. Because of same reasons the results in [5] cannot be applied. The methods
in [3,10,11] cannot conclude either that the system is almost diagonal. Moreover, techniques of block-
diagonalization for nonanalytic systems of differential systems, e.g., [9], could lead to the asymptotic
integration of our example, but they cannot guarantee that our system is almost diagonal.

Finally we show that Theorem 1 is best possible in the following sense. We demonstrate that (3.10)
(or (3.12)) is necessary for system (1.3) to be almost diagonal, i.e., for approximation (1.12) to hold.
Consider

Y ′ =
[(

i 0
0 −i

)
+
(

0 t−p

t−q 0

)]
Y (4.6)

with p, q > 0. (3.12) requires thatr12r21/(λ1 − λ2) = t−p−q/2i ∈ L1, i.e.,α ≡ p+ q > 1. We show that
if on the contrary,α � 1 then representation (1.12) of a fundamental solution, namely

Y (t) = exp
∫ t ( i 0

0 −i

)
ds
(
I + P (t)

)
(4.7)

is impossible.
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Levinson’s theorem guarantees an asymptotic approximation

Y (t) =
(
I +Q(t)

)
exp
(∫ t (µ1(s) 0

0 µ2(s)

)
ds
)

, (4.8)

whereµ1,2(t) = ±i
√

1− t−α are the eigenvalues ofD+R. If both (4.7) and (4.8) hold for a fundamental
solution, then

exp
∫ t

t0

(
i 0
0 −i

)
ds
(
I + P (t)

)(
I + P (t0)

)−1

≡
(
I +Q(t)

)
exp

∫ t

t0

(
µ1(s) 0

0 µ2(s)

)
ds
(
I +Q(t0)

)−1

with someP (t), Q(t) → 0 ast → ∞. Comparing the (1, 1)-term on each side of the matrix identity
above yields

(
1 + p11(t)

)
= A

(
1 + q11(t)

)
e

i
∫ t

t0
(−1+

√
1−s−α) ds

+Bq12(t) e
−i
∫ t

t0
(1+

√
1−s−α) ds

(4.9)

with some constantsA, B. Herepij, qij → 0 and∫ t

t0

(
−1 +

√
1− s−α

)
ds = −

∫ t

t0

s−α

1 +
√

1− s−α
ds → −∞ ast → ∞

if α � 1. The left-hand side of (4.9) satisfies lim(1+ p11(t)) = 1 ast → ∞. If A = 0 then evidently
we have a contradiction as the right-hand side of (4.9) tends to 0. IfA �= 0 then the real part of the
right-hand side would have extreme values arbitrary close to±|A|, evidently a contradiction. Thus (4.6)
is not almost diagonal without assumption (3.12).

5. More integrations by part

Let us now modify Theorem 1 by additional integrations by parts of (3.11). Define successively a
sequence of generalized derivatives

r[0]
αβ(t) = rαβ(t), r[m+1]

αβ (t) =
[ r[m]

αβ (t)

λα(t) − λβ(t)

]′
, m = 0, 1,. . . .

Then (3.11) may be written as

M1,αβ(t) =
∫ ∞

t
r[0]
αβ(t1) exp

[∫ t1

t0

(
λβ(s) − λα(s)

)
ds
]

dt1

=
r[0]
αβ(t)

λα(t) − λβ(t)
exp
[∫ t

t0

(
λβ(s) − λα(s)

)
ds
]

+
∫ ∞

t
r[1]
αβ(t1) exp

[∫ t1

t0

(
λβ(s) − λα(s)

)
ds
]

dt1.
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(Note that the denominator ofr[1]
αβ is λα − λβ and not (λβ − λα)!) By � repeated integrations by parts

and assumptions which ensure the vanishing of the integrated terms att1 = ∞, we get

M1,αβ(t) =
�∑

m=0

r[m]
αβ (t)

λα(t) − λβ(t)
exp
[∫ t

t0

(
λβ(s) − λα(s)

)
ds
]

+
∫ ∞

t
r[�+1]
αβ (t1) exp

[∫ t1

t0

(
λβ(s) − λα(s)

)
ds
]

dt1.

Analogously with the previous proof, we get

Theorem 2. Let � be a fixed integer. Assume that(3.7)holds and for allα,β = 1, . . . ,n, α �= β,

r[m]
αβ (t)

λβ(t) − λα(t)
→ 0 ast → ∞, m = 0, . . . , �, (5.1)

r[�+1]
αβ =

[ r[�]
αβ(t)

λα(t) − λβ(t)

]′
∈ L1[a,∞), (5.2)

and fork �= β,(∫ ∞

t

∣∣r[�+1]
αβ (t1)

∣∣ dt1)rβk(t) ∈ L1[a,∞). (5.3)

Then a fundamental solution of Eq.(1.3) is given by(1.12).

Outline of proof. As in the proof of Theorem 1, we show also here that by (5.1), (5.2) and (5.3),
M1(t) → 0 ast → ∞ andM1(t)K(t) ∈ L[a,∞). Hence the small perturbationP (t) is obtained as the
solution of (3.6).
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