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We consider the class of nonlinear eigenvalue problems

(an ¡ 1(x)(¢ ¢ ¢ (a1(x)((a0(x)up0¤) 0 )p1¤) 0 ¢ ¢ ¢ )pn ¡ 1¤) 0 = ¶ b(x)ur¤;

where yp¤ = jyjp sgn y, pi > 0 and p0p1 : : : pn ¡ 1 = r, with various boundary
conditions. We prove the existence of eigenvalues and study the zero properties and
structure of the corresponding eigenfunctions.

1. Introduction

The study of the oscillation properties of nonlinear di¬erential equations

(a(x)(y0)p¤ )0 + b(x)yp ¤ = 0

with the signed power

yp ¤ = jyjp sgn y

originates in the works of Mirzov [17] and Elbert [5], who named these equa-
tions `half linear’. This theory extends various aspects of oscillation theory, such as
the Picone identity [10], Sturm comparison theorem [16, 17], oscillation and non-
oscillation criteria of Kneser type [16] and Hille type [14], and other oscillation
criteria [3].

One branch of this research is the study of the eigenvalue problem

(a(x)(u0)p ¤ )0 + ¶ b(x)up ¤ = 0;

u(a) = u(b) = 0:

The existence of the eigenvalues and a description of the associated eigenfunctions
was proved in [4,15] through the use of a generalized Pr�ufer transformation. Similar
eigenvalue problems had been studied earlier in the context of n-width problems in
Sobolev spaces. Tikhomirov and Babadzhanov [19] considered an eigenvalue prob-
lem of the type

((u0)p ¤ )0 + ¶ up ¤ = 0;

u(a) = u(b) = 0;
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and explicitly calculated its eigenvalues and eigenfunctions. A higher-order eigen-
value problem

((u(r))p ¤ )(r) = ( ¡ 1)r ¶ up¤ ;

u(i)(a) = u(i)(b) = 0; i = 0; : : : ; r ¡ 1;

was studied by Pinkus [18], who proved an analogue of our main theorem in
this particular case. Buslaev and Tikhomirov [2] considered equations of the form
((u(r))p ¤ )(r) = (¡ 1)r ¶ uq ¤ , with p 6= q and various homogeneous boundary values
also in connection with n-width problems. Their results are di¬erent in character.

The aim of this work is the study of eigenvalue problems for high-order nonlinear
homogeneous equations of the form

(an¡1(x)(¢ ¢ ¢ (a1(x)((a0(x)up0 ¤ )0)p1 ¤ )0 ¢ ¢ ¢ )pn ¡ 1 ¤ )0 = ¶ b(x)ur ¤ ; (1.1)

where

pi > 0; p0p1 ¢ ¢ ¢ pn¡1 = r;

ai(x); b(x) > 0; ai 2 C(n¡i); b 2 C;

with various boundary conditions and under suitable assumptions on the powers
p0; : : : ; pn¡1. For the particular case p0 = p1 = ¢ ¢ ¢ = pn¡1 = 1, equation (1.1)
reduces to the well-known linear di¬erential equation

(an¡1(x)(¢ ¢ ¢ (a1(x)(a0(x)u)0)0 ¢ ¢ ¢ )0)0 = ¶ b(x)u: (1.2)

We shall mention here some results concerning the eigenvalue problem associated
with this linear equation.

The left-hand side of (1.2) consists of the general disconjugate operator written
in a P´olya factorization form and, as such, equation (1.2) is traditionally written as

Ln[u] = ¶ b(x)u;

with the notation

L0[u] = a0(x)u;

Li[u] = ai(x)(Li¡1[u])0; i = 1; : : : ; n;

)
(1.3)

an(x) ² 1. Reasonable boundary conditions associated with (1.2) are, for example,

Li[u](a) = 0; i = 0; : : : ; k ¡ 1;

Li[u](b) = 0; i = 0; : : : ; n ¡ k ¡ 1;

)
(1.4)

1 6 k 6 n ¡ 1, which are equivalent to

u(i)(a) = 0; i = 0; : : : ; k ¡ 1;

u(i)(b) = 0; i = 0; : : : ; n ¡ k ¡ 1:
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A description of the eigenvalues and eigenfunctions of (1.2) and (1.4) was announced
by Krein [13]. More general boundary conditions of the form

n¡1X

j = 0

¬ ijLj [u](a) = 0; i = 0; : : : ; k ¡ 1;

n¡1X

j = 0

­ ijLj [u](b) = 0; i = 0; : : : ; n ¡ k ¡ 1;

9
>>>>>=

>>>>>;

(1.5)

were studied by Karlin [11] and Karon [12]. In these works, the positivity properties
of the associated Green functions were proved and results concerning the di¬eren-
tial eigenvalue problem were then obtained from known results concerning integral
equations. A totally di¬erent approach, which lies within the area of the theory
of di¬erential equations, may be found in [6] and [7, ch. 10]. It deals mainly with
boundary conditions of the type

Li[u](a) = 0; i = i1; : : : ; ik;

Lj [u](b) = 0; j = j1; : : : ; jn¡k:

)
(1.6)

A typical result for these eigenvalue problems is as follows.

The eigenvalue problem (1.2) and (1.4) has an in¯nite sequence of real eigenvalues

0 < ( ¡ 1)n¡k ¶ 1 < ( ¡ 1)n¡k ¶ 2 < ¢ ¢ ¢ ; ¶ i ! 1 as i ! 1:

To each ¶ i there corresponds an essentially unique eigenfunction ui that has pre-
cisely i ¡ 1 zeros, all simple, in (a; b), and there are no real eigenvalues except these.
The zeros of ui in (a; b) interlace with those of ui+ 1.

The same results hold for the boundary-value problem (1.2) and (1.5) under suit-
able sign-consistency assumptions on the matrices ( ¬ ij) and (­ ij). Similar results
also hold for boundary conditions (1.6). However, it is necessary to explicitly ensure
that ¶ = 0 is not an eigenvalue. (If 0 is an eigenvalue, its multiplicity may be bigger
than 1, which adds further complications and will be avoided here.) This is done
by the following P´olya condition, which will be assumed throughout our work.

Condition 1.1. A necessary and su¯ cient condition that ¶ = 0 is not an eigen-
value of (1.2) and (1.6) is that, for all ` = 1; : : : ; n, at least ` boundary conditions
are imposed in (1.6) on L0[u]; : : : ; L`¡1[u].

Analogously with the factorization (1.3), we de­ ne for (1.1) the nonlinear oper-
ators

N0[u] = a0(x)up0 ¤ ;

Ni[u] = ai(x)((Ni¡1[u])0)pi ¤ ; i = 1; : : : ; n;

)
(1.7)

with an(x) ² 1, pn = 1 and rewrite (1.1) as

Nn[u] = ¶ b(x)ur ¤ :
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Equation (1.1) will be studied together with various two-point nonlinear boundary
conditions. To make the complicated calculations tractable, the boundary condi-
tions will be restricted to those of the type analogous to (1.6), namely,

Ni[u](a) = 0; i = i1; : : : ; ik;

Nj [u](b) = 0; j = j1; : : : ; jn¡k;

)
(1.8)

with 1 6 k 6 n ¡ 1. The above-mentioned condition 1.1 will always be assumed to
hold where the Ni replace the Li therein.

By (1.7),

(Ni¡1[u])0 = (a¡1
i (x)Ni[u])1=pi ¤ ; i = 1; : : : ; n ¡ 1;

(Nn¡1[u])0 = ¶ b(x)(a¡1
0 (x)N0[u])r=p0 ¤ :

)
(1.9)

With the notation vi = Ni[u], equation (1.1) is seen to be equivalent to the nonlinear
system

v0
i¡1 = (a¡1

i (x)vi)
1=pi ¤ ; i = 1; : : : ; n ¡ 1;

v0
n¡1 = ¶ b(x)(a¡1

0 (x)v0)r=p0 ¤ :

)

(1.10)

Since p0 ¢ ¢ ¢ pn¡1 = r, the product of all powers on the right-hand side of (1.10)
is 1. Thus some of these powers are larger than 1, while others are smaller than 1.
The superlinear terms make the global existence of solutions suspect, while the
sublinear ones may make this system non-Lipschitzian, from which arise questions
of uniqueness. This makes (1.10) intriguing and will deserve a detailed analysis.

To achieve di¬erentiability with respect to the parameters, we must impose some
restrictions on the pi. It transpires that the following assumptions will be needed.

Assumption 1.2. Let each of the sets of indices fi1; : : : ; ikg, fj1; : : : ; jn¡kg be
decomposed into blocks of consecutive integers and assume that at least one
of the following four assumptions holds. For each block of consecutive integers
f · ; · + 1; : : : ; · + `g, which are sub-blocks of fi1; : : : ; ikg, either

p· ; : : : ; p· + ` 6 1

or

1 6 p· 6 ¢ ¢ ¢ 6 p · + `;

or the same holds for sub-blocks of fj1; : : : ; jn¡kg.

What should be done if (1.8) contains boundary conditions of the type

Ni[u](a) = 0; i = 0; : : : ; h;

and also

Ni[u](a) = 0; i = `; : : : ; n ¡ 1;

where h < `? Since the equations in (1.10) are arranged in a cyclic order, it is
natural not to consider the sub-blocks f0; : : : ; hg and f`; : : : ; n ¡ 1g, but rather one
sub-block f`; ` + 1; : : : ; n ¡ 1; 0; : : : ; hg, which `wraps around’ in a cyclic order. The



Nonlinear eigenvalue problems 1337

powers associated with this block in (1.10) will be fp`; : : : ; pn¡1; p0=r; p1; : : : ; phg,
and assumption 1.2 should hold for this block.

For example, consider (1.1) with the boundary-value conditions

Ni[u](a) = 0; i = 0; : : : ; k ¡ 1;

Nj [u](b) = 0; j = k; : : : ; n ¡ 1:

In this case, assumption 1.2 holds if one of the following conditions is satis­ ed:

(i) p0; p1; : : : ; pk¡1 6 1;

(ii) 1 6 p0 6 p1 6 ¢ ¢ ¢ 6 pk¡1;

(iii) pk; pk + 1; : : : ; pn¡1 6 1;

(iv) 1 6 pk 6 pk + 1 6 ¢ ¢ ¢ 6 pn¡1.

An extreme opposite example is the equation ((y(r))p ¤ )(n¡r) = ¶ b(x)yp ¤ , with only
one power pi di¬erent from 1. For this equation, every set of boundary condi-
tions (1.8) satis­ es assumption 1.2. Note that the examples of second- and 2rth-
order at the beginning of this paper are of this type.

The main result of this work is the following.

Theorem 1.3. If (1.1), together with the boundary conditions (1.8), satisfy con-
dition 1.1 and assumption 1.2, then (1.1), (1.8) have an in¯nite sequence of real
eigenvalues

0 < ( ¡ 1)n¡k ¶ 1 < ( ¡ 1)n¡k ¶ 2 < ¢ ¢ ¢ ; ¶ i ! 1 as i ! 1:

To each ¶ i there corresponds an essentially unique eigenfunction ui that has pre-
cisely i ¡ 1 zeros in (a; b), all of them simple, and there are no real eigenvalues
except these. The zeros of ui in (a; b) interlace with those of ui + 1.

Why do we only consider the nonlinear operator yp¤ ? Could these signed powers
be replaced by other nonlinear operators in (1.1), say, Ni[u] = ’((Ni¡1[u])0)? If
we want our equation to be homogeneous, namely, to have the property that if
u is an eigenfunction, then cu is an eigenfunction for all c, then we are led to
the functional equation ’(c1u) = c2’(u), hence the Cauchy functional equation
’(x)’(y) = ’(xy)’(1). Thus ’(u) must be either jujp or up¤ (see [1]). It turns
out that this choice is mandatory also at some steps of our method of proof. As
sign changes of solutions play an important role, it is natural to demand that
sgn ’(u) = sgn u.

2. Notation and tools

The linear eigenvalue problem (1.2), (1.4) is equivalent to an integral equation whose
kernel is the associated Green function. This integral equation can be approxi-
mated by a matrix equation. Hence our linear (and nonlinear) eigenvalue prob-
lems are closely related to linear (and nonlinear) matrix eigenvalue problems with
strictly total positive matrices. For results in this direction, plus numerous refer-
ences, see [8].
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Let ¼ (f ) denote the number of sign changes of the function f in the interval
(a; b). If x1; x2; : : : are the totality of the zeros of N0[f ]; : : : ; Nn¡1[f ] in (a; b), let
n(xi) denote the maximum number of consecutive Nj [f ], j = 0; : : : ; n ¡ 1, which
vanish at xi,

Nj [f ](xi) = 0; j = m; : : : ; m + n(xi) ¡ 1:

Note that, in the linear case (pi = 1), the number of consecutive vanishing Lj [u](xi)
starting at j = m simply count the multiplicity of the zero xi of Lm[f ]. However, in
the case of the nonlinear operators Nj [u], n(xi) is not necessarily the multiplicity
of the zero xi of a solution u of (1.1), due to the lack of smoothness. This is
because v0

j = (Nj [u])0 of (1.10) may be just continuous at xi and only its signed
power ((Nj [u])0)pj+1 ¤ is again di¬erentiable. However, n(xi) = 1 does imply that if
Nj [u](xi) = 0, then Nj + 1[u](xi) 6= 0, so xi is a simple zero in the usual sense.

Proposition 2.1. Let ¼ (f) denote the number of sign changes of a function f in
(a; b). Then

¼ (Nn[f ]) > ¼ (f)+
X

hn(xi)i+#fi j Ni[f ](a) = 0g+#fj j Nj [f ](b) = 0g¡ n; (2.1)

where hn(xi)i denotes the largest even integer that is not larger than n(xi) and
#f: : : g counts the number of zero boundary values.

Outline of proof. The proposition is adapted from [7, ch. 1.2], where a more detailed
claim is proved in the linear case. The proof of [7] applies almost verbatim, with
each Li[f ] replaced by Ni[f ]. It is a consequence of Rolle’s theorem applied to
Ni[u] = ai((Ni¡1[u])0)pi ¤ , a careful count of zeros and sign changes, and sgn up¤ =
sgn u. For full details, see [7, lemma 1.11].

By Rolle’s theorem, ¼ (g0) > ¼ (g) ¡ 1, but if g vanishes at either endpoint, we, in
fact, have

¼ (g0) > ¼ (g) + #fg(a) = 0g + #fg(b) = 0g ¡ 1:

Here, the counting #f: : : g means that #fg(c) = 0g = 1 if g(c) = 0, and 0 otherwise.
Apply this to the function g = N0[f ] = a0f p0 ¤ and note that

sgn N0[f ] = sgn fp0 ¤ = sgn f and sgn(N0[u])0 = sgn((N0[u])0)p1 ¤ = sgn N1[u]:

Thus

¼ (N1[f ]) > ¼ (f) + #fN0[f ](a) = 0g + #fN0[f ](b) = 0g ¡ 1:

Next we repeat the same argument for the functions N1[f ]; N2[f ]; : : : , and obtain,
analogously,

¼ (Ni + 1[f ]) > ¼ (Ni[f ])+ #fNi[f ](a) = 0g+ #fNi[f ](b) = 0g ¡ 1; i = 0; : : : ; n ¡ 1:

Summing these inequalities leads us to (2.1), except for the term
P

hn(xi)i.
If ` = n(xi), then ` applications of Rolle’s theorem show that Nn[f ] has ` ¡ 1

additional sign changes. If ` is odd, then f changes its sign at xi and the net
contribution of this zero to the right-hand side of (2.1) is ` ¡ 1. For even `, f does
not change its sign there. Thus, in each case, there is added h`i to (2.1).



Nonlinear eigenvalue problems 1339

If u is a solution of (1.1) and a0(x); b(x) > 0, then the functions u; N0[u] and
Nn[u] = ¶ ba¡r=p0

0 (N0[u])r=p0 ¤ have the same sign changes, and hence, by (2.1), we
have the following result.

Proposition 2.2. For every non-trivial solution u of (1.1),

X
hn(xi)i + #fi j Ni[u](a) = 0g + #fj j Nj [u](b) = 0g 6 n: (2.2)

If a solution of (1.1) satis­ es the boundary conditions (1.8), then

#fi j Ni[u](a) = 0g > k and #fj j Nj [u](b) = 0g > n ¡ k:

It thus follows from (2.2) that, in fact,

#fi j Ni[u](a) = 0g = k; #fj j Nj [u](b) = 0g = n ¡ k

and n(xi) = 1 for every xi in (a; b). So, if eigenfunctions u exist, they necessarily
have only simple zeros in (a; b), as do the Nj [u], j = 1; : : : ; n ¡ 1.

Another conclusion is that any non-trivial solution of (1.1) may have only a
­ nite number of zeros in [a; b]. Suppose, to the contrary, that u has a sequence
of zeros xi ! c as i ! 1. By Rolle’s theorem, each Nj [u] has a sequence of
zeros xj

i ! c and consequently Nj [u](c) = 0 for all j = 0; : : : ; n ¡ 1. But then
#fi j Ni[u](c) = 0g = n, #fj j Nj [u](xj

i ) = 0g > 1, contradicting (2.2) on the inter-
val with endpoints xj

i and c.

3. Proof of theorem 1.3

The strategy of our proof of theorem 1.3 is to connect the nonlinear (1.1), (1.8) to
the linear (1.2), (1.6) through a continuum of intermediate problems, and show by
means of the implicit function theorem that the appropriate information about the
linear problem can be extended to the nonlinear problem.

For all t, 0 6 t 6 1, let

pi(t) = tpi + (1 ¡ t); i = 1; : : : ; n ¡ 1;

r(t) = p0(t) ¢ ¢ ¢ pn¡1(t):

Then

(p0(1); : : : ; pn¡1(1); r(1)) = (p1; : : : ; pn¡1; r);

while

(p0(0); : : : ; pn¡1(0); r(0)) = (1; : : : ; 1; 1):

We now consider (1.1) together with the boundary conditions (1.8), with pi replaced
by pi(t), and verify the existence of the desired eigenvalues and eigenfunctions for
all 0 6 t 6 1. Note that if assumption 1.2 holds for the given powers pi, it also
holds for pi(t) for all t 2 [0; 1]. For ease of notation, the dependence on t will be
explicitly stated only when needed.

Solutions of (1.10) may be parametrized by an initial-value problem

(v0(a); : : : ; vn¡1(a)) = (N0[u](a); : : : ; Nn¡1[u](a)) = ( ¬ 0; : : : ; ¬ n¡1): (3.1)
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This can be done only if the initial-value problem for the nonlinear system (1.10)
has a unique solution v(x; ¬ 0; : : : ; ¬ n¡1) and this solution is extendable to the whole
interval [a; b]. This will be veri­ ed in theorems A.1 and A.2 of the appendix. In this
section we will assume this fact.

An eigenfunction is a solution of the system (1.10) that satis­ es the boundary
conditions (1.8). To satisfy the k boundary conditions of (1.8) at x = a, we require
that

¬ i = 0 for i = i1; : : : ; ik:

Our aim is to verify that during the change of t we are permitted to determine the
other n ¡ k parameters ¬ i, i 6= i1; : : : ; ik, plus ¶ , so that the boundary conditions
at x = b are also satis­ ed.

As we already mentioned, if a solution u 6² 0 of (1.1) satis­ es the boundary
conditions (1.8), then #fi j Ni[u](a) = 0g = k, #fj j Nj [u](b) = 0g = n ¡ k, and
consequently,

Ni[u](a) 6= 0; i 6= i1; : : : ; ik;

Nj [u](b) 6= 0; j 6= j1; : : : ; jn¡k:

In particular, ¬ i = Ni[u](a) 6= 0 for i 6= i1; : : : ; ik. If u is a solution of (1.1), then
from the condition p0 ¢ ¢ ¢ pn¡1 = r, cu is also a solution for every constant c. There-
fore, without loss of generality, we may assume one ¬ i 6= 0 to be 1. Furthermore,
at present, the precise choice of the i1; : : : ; ik makes no di¬erence in the analysis,
so, for simplicity of notation, we will assume that the n ¡ k non-vanishing initial
values f¬ i j i 6= i1; : : : ; ikg are ¬ k; : : : ; ¬ n¡2; ¬ n¡1 and ¬ n¡1 = 1.

To summarize, we shall search for eigenfunctions of the form

u(x; ¬ k; : : : ; ¬ n¡2; ¶ ; t)

that satisfy the n ¡ k boundary conditions of (1.8) at x = b,

Nj [u(b; ¬ k; : : : ; ¬ n¡2; ¶ ; t)] = 0; j = j1; : : : ; jn¡k: (3.2)

These are n ¡ k equations in the n ¡ k variables ¬ k; : : : ; ¬ n¡2; ¶ . Our aim is to solve
them and obtain the continuous functions ¬ k(t); : : : ; ¬ n¡2(t); ¶ (t) for 0 6 t 6 1.
For t = 0, it is known from the linear theory that, for every integer m, there exists
an eigenvalue ¶ m and an essentially unique eigenfunction um with m ¡ 1 simple
zeros in (a; b). Hence (3.2) has, for t = 0, a solution ¬ k(0); : : : ; ¬ n¡2(0); ¶ (0) (and
um(x) = u(x; ¬ k(0); : : : ; ¬ n¡2(0); ¶ (0); 0)). This solution of (3.2) will be continued
by the implicit function theorem on t > 0 and generate an eigenfunction of the non-
linear (1.1), (1.8) also with m ¡ 1 simple zeros. Technically, we prove the following
result.

Proposition 3.1. Let ~t 2 [0; 1] and suppose that, for t = ~t, the system (3.2) has a
solution ¬ k(~t); : : : ; ¬ n¡1(~t); ¶ (~t). Then, for t = ~t,

@(Nj1
[u]; : : : ; Njn ¡ k

[u])

@( ¬ k; : : : ; ¬ n¡2; ¶ )

¯̄
¯̄
x= b

6= 0: (3.3)

Proof. We need the di¬erentiability of the solution of the initial-value prob-
lem (1.10), (3.1) with respect to each initial value ¬ i and ¶ . If 1=pi < 1, then
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at the points where vi vanishes, the right-hand side of (1.10) does not have contin-
uous derivatives with respect to vi. So the di¬erentiability with respect to initial
values does not follow from the standard Peano theorem [9] and it is a quite delicate
problem. It will be veri­ ed in theorem A.3 of the appendix that if assumption 1.2
about the powers pi holds, then all @Nj [u]=@¬ ` and @Nj [u]=@¶ indeed exist and
are continuous in [a; b]. This will be postulated in the present section. The di¬er-
entiabilty of the Nj [u] with respect to t is easily proved.

In the following calculations we omit ~t altogether, so keep in mind that pi = pi(~t),
u is the corresponding eigenfunction, etc.

Suppose that the Jacobian determinant (3.3) does vanish. Then there exist n ¡ k
values (ck; : : : ; cn¡2; c¶ ) 6= (0; : : : ; 0) such that

ck
@Nj [u]

@¬ k
(b) + ¢ ¢ ¢ + cn¡2

@Nj [u]

@¬ n¡2
(b) + c ¶

@Nj [u]

@¶
(b) = 0; j = j1; : : : ; jn¡k: (3.4)

The next step is to characterize the derivatives

@

@¬
Nj [u] and

@

@¶
Nj [u];

when ¬ is one of the ¬ k; : : : ; ¬ n¡2. Once it is known, by theorem A.3, that these
derivatives exist, we may straightforwardly di¬erentiate (1.10),

v0
i¡1 = (a¡1

i (x)vi)
1=pi ¤ ; i = 1; : : : ; n ¡ 1;

v0
n¡1 = ¶ b(x)(a¡1

0 (x)v0)r=p0 ¤

with respect to ¬ = ¬ `, using (xp¤ )0 = pjxjp¡1. It follows that the

zi =
@vi

@¬
=

@Ni[u]

@¬

satisfy

z0
i¡1 = (a¡1=pi

i p¡1
i jvij1=pi¡1)zi; i = 1; : : : ; n ¡ 1;

z0
n¡1 = ¶ b

µ
a¡r=p0

0

r

p0
jv0jr=p0¡1

¶
z0:

9
>=

>;
(3.5)

To simplify this linear system, let us de­ ne

» i = a
1=pi

i pijvij¡1=pi + 1; i = 0; : : : ; n ¡ 1:

Then, for i = 1; : : : ; n ¡ 1, system (3.5) becomes z0
i¡1 = » ¡1

i zi. Substituting
vi = Ni[u] = ai((Ni¡1[u])0)pi ¤ , we get

» i = a
1=pi

i pijai((Ni¡1[u])0)pi j¡1=pi + 1 = aipij(Ni¡1[u])0jpi¡1:

For i = 0, we substitute v0 = N0[u] = a0up0 ¤ and obtain

» 0 = a
1=p0

0 p0ja0up0 j¡1=p0 + 1 = a0p0jujp0¡1;

and the last equation of (3.5) becomes

z0
n¡1 = ¶ ba

¡r=p0

0

r

p0
ja0up0 jr=p0¡1z0 = ¶ b

rjujr¡1

a0p0jujp0¡1
z0 =

¶ b

» 0
rjujr¡1z0:
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Thus

(z0; : : : ; zn¡1) =
@

@¬
(N0[u]; : : : ; Nn¡1[u])

solves the linear system

z0
i¡1 = » ¡1

i zi; i = 1; : : : ; n ¡ 1;

z0
n¡1 = ¶ brjujr¡1 » ¡1

0 z0;

)
(3.6)

with
» i = aipij(Ni¡1[u])0jpi¡1; i = 1; : : : ; n ¡ 1;

» 0 = a0p0jujp0¡1;

)
(3.7)

and » i > 0.
We are also interested in u ¬ = @u=@¬ . Note that

z0 =
@

@¬
N0[u] =

@

@¬
(a0up0 ¤ ) = a0p0jujp0¡1 @u

@¬
= » 0

@u

@¬
:

Thus

u ¬ =
@u

@¬
= » ¡1

0 z0

and (3.6) is equivalent to the nth-order linear di¬erential equation

( » n¡1 ¢ ¢ ¢ ( » 1( » 0u ¬ )0)0 ¢ ¢ ¢ )0 = ¶ brjujr¡1u ¬ ; (3.8)

or more explicitly,

(an¡1pn¡1j(Nn¡2[u])0jpn ¡ 1¡1(¢ ¢ ¢ (a1p1j(N0[u])0jp1¡1(a0p0jujp0¡1u ¬ )0)0 ¢ ¢ ¢ )0)0

= ¶ b(x)rjujr¡1u ¬ :

This is the variational equation of (1.1) with respect to the solution u. Of course, it
can be derived by direct di¬erentiation of (1.1), but we also need (3.6). As in (1.3),
we de­ ne the linear di¬erential operators

M0[z] = » 0z;

Mi[z] = » i(Mi¡1[z])0; i = 1; : : : ; n;

» n ² 1. With this notation, equation (3.8) is written as

Mn[u ¬ ] = ¶ brjujr¡1u ¬ : (3.9)

The (@=@¬ )Ni[u] = zi are conveniently characterized in terms of (3.8) by

zi = » iz
0
i¡1

= » i(» i¡1z0
i¡2)0

= ¢ ¢ ¢ = » i(¢ ¢ ¢ ( » 1z0
0) ¢ ¢ ¢ )0

= » i

µ
¢ ¢ ¢

µ
» 1

µ
» 0

@u

@¬

¶0¶
¢ ¢ ¢

¶0

= Mi

·
@u

@¬

¸
;
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i.e.
@Ni[u]

@¬
= Mi

·
@u

@¬

¸
; i = 0; : : : ; n ¡ 1: (3.10)

This relation between the nonlinear operator Ni and its linearization Mi will be
used later. Note that all calculations above are independent of the choice of the
parameter ¬ = ¬ `.

We observe that proposition 2.1 holds for the operator Mn and proposition 2.2
holds for (3.9). This is not obvious, since if pi < 1, then » i = a

1=pi

i pijvij¡1=pi + 1

is singular at the points where vi = Ni[u] vanishes. However, in theorem A.3, we
prove that under assumption 1.2, the derivatives

zi =
@Ni[u]

@¬
= Mi[u ¬ ]

exist and are continuous. Moreover, it follows from (A 14) that even if z0
i = (Mi[u ¬ ])0

is unbounded at a point x = c, a < c < b, it does not change its sign there, say,
z0

i(c
+ ) = z0

i(c
¡) = +1. Therefore, a Rolle’s-theorem-type argument may be applied

to Mi + 1[u ¬ ] = » i+ 1(Mi[u ¬ ])0 and propositions 2.1 and 2.2 follow.
The (@=@¶ )Ni[u] are calculated similarly. Let

( ± 0; : : : ; ± n¡1) =
@

@¶
(N0[u]; : : : ; Nn¡1[u]):

The di¬erentiation of (1.10) with respect to ¶ is similar to (3.5), except that the
last equation is now

± 0
n¡1 = ¶ b

µ
a¡r=p0

0

r

p0
jv0jr=p0¡1

¶
± 0 + b(a¡1

0 v0)r=p0 ¤ :

Since

(a¡1
0 v0)r=p0 ¤ = (up0 ¤ )r=p0 ¤ = ur ¤ ;

( ± 0; : : : ; ± n¡1) is a solution of the linear system

± 0
i¡1 = » ¡1

i ± i; i = 1; : : : ; n ¡ 1;

± 0
n¡1 = ¶ brjujr¡1 » ¡1

0 ± 0 + bur ¤ :

We also have, as previously,

± 0 =
@

@¶
N0[u] = » 0

@u

@¶
:

Thus, as in (3.10),

@Ni[u]

@¶
= Mi

·
@u

@¶

¸
; i = 0; : : : ; n ¡ 1; (3.11)

and u ¶ = @u=@¶ satis­ es

Mn[u ¶ ] = ¶ brjujr¡1u ¶ + bur ¤ : (3.12)
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Finally, we show how the eigenfunction u of equation (1.1) is related to the
linearization of the same equation. Namely, what is Mi[u]?

M0[u] = » 0u

= a0p0jujp0¡1u

= p0a0up0 ¤

= p0N0[u];

M1[u] = » 1( » 0u)0

= (a1p1j(N0[u])0jp1¡1)(p0N0[u])0

= p0p1a1((N0[u])0)p1 ¤

= p0p1N1[u];

and generally,
Mi[u] = p0p1 ¢ ¢ ¢ piNi[u]; i = 0; : : : ; n ¡ 1: (3.13)

Recall that Nn[u] = (Nn¡1[u])0 and p0p1 ¢ ¢ ¢ pn¡1 = r. Thus

Mn[u] = (Mn¡1[u])0 = p0 ¢ ¢ ¢ pn¡1(Nn¡1[u])0 = rNn[u]

and, consequently, u satis­ es

Mn[u] = r¶ bur ¤ : (3.14)

After these preparations, we can now return to (3.4). From the identities (3.10)
and (3.11) and due to the linearity of the operators Mj , equations (3.4) may be
rewritten as

Mj [cku ¬ k + ¢ ¢ ¢ + cn¡2u ¬ n ¡ 2 + c¶ u ¶ ](b) = 0; j = j1; : : : ; jn¡k; (3.15)

where

u ¬ ` =
@u

@¬ `
; u ¶ =

@u

@¶
:

Our aim is to show that this is impossible.
Recall that

Pn¡2
k ciu ¬ i is a solution of (3.9), while c¶ u ¶ is a solution of (3.12).

For brevity, we write w ¬ =
Pn¡2

k ciu ¬ i
and consider the function w ¬ + c¶ u ¶ . Equa-

tion (3.15) implies that the function w ¬ + c¶ u ¶ satis­ es at b the n ¡ k conditions

Mj [w ¬ + c ¶ u ¶ ](b) = 0; j = j1; : : : ; jn¡k:

u = u(x; ¬ k; : : : ; ¬ n¡2; ¶ ) was de­ ned by the initial value (3.1), so that it satis­ es
at a

Ni[u](a) = 0; i = i1; : : : ; ik;

plus the normalization
Nn¡1[u](a) = 1

for all ¬ k; : : : ; ¬ n¡2; ¶ . Di¬erentiation with respect to some ¬ ` or ¶ , together
with (3.10) and (3.11) evidently yields that u ¬ ` , u ¶ , as well as any of their lin-
ear combinations, satisfy at a the k + 1 conditions

Mi[w ¬ + c ¶ u ¶ ](a) = 0; i = i1; : : : ; ik; n ¡ 1:
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We remark that this implies that c ¶ 6= 0. Otherwise, w ¬ , which is a solution of the
linear equation (3.9), satis­ es (k + 1) + (n ¡ k) = n + 1 homogeneous boundary
conditions at the endpoints a and b, which is impossible by proposition 2.2.

The solution u of (1.1) also satis­ es, by (3.13), the ­ rst k of these conditions at
a and the same n ¡ k conditions at b. Thus u, w ¬ + c¶ u ¶ and any of their linear
combinations satisfy the n linear boundary conditions

Mi[y](a) = 0; i = i1; : : : ; ik;

Mj [y](b) = 0; j = j1; : : : ; jn¡k:

)
(3.16)

Let us choose a linear combination f0 = w ¬ + c ¶ u ¶ + cu that satis­ es one addi-
tional boundary condition of the same type at one of the endpoints, say,

Mi[f0](a) = 0; i = i1; : : : ; ik; ik + 1;

Mj [f0](b) = 0; j = j1; : : : ; jn¡k:

)
(3.17)

This implies that #fi j Mi[f0](a) = 0g > k + 1 and #fj j Mj [f0](b) = 0g > n ¡ k,
so, by proposition 2.1,

¼ (Mn[w ¬ + c ¶ u ¶ + cu]) > ¼ (w ¬ + c¶ u ¶ + cu) + 1:

But, by (3.9), (3.12) and (3.14),

Mn[w ¬ + c ¶ u ¶ + cu] = ¶ brjujr¡1w ¬ + c¶ ( ¶ brjujr¡1u ¶ + bur ¤ ) + c( ¶ brur ¤ )

= ¶ brjujr¡1

·
w ¬ + c ¶

µ
u ¶ +

1

¶ r
u

¶
+ cu

¸
;

and therefore

¼

µ
w ¬ + c ¶ u ¶ +

µ
c ¶

¶ r
+ c

¶
u

¶
> ¼ (w ¬ + c ¶ u ¶ + cu) + 1: (3.18)

The new combination

f1 = w ¬ + c ¶ u ¶ +

µ
c ¶

¶ r
+ c

¶
u

satis­ es again the n boundary conditions (3.16) (but not the n + 1 boundary con-
ditions (3.17)!). So #fi j Ni[f1](a) = 0g > k, #fj j Nj [f1](b) = 0g > n ¡ k
and another application of the operator Mn, together with proposition 2.1, gives
¼ (Mn[f1]) > ¼ (f1). Explicitly,

¼

µ
w ¬ + c ¶ u ¶ +

µ
2c ¶

¶ r
+ c

¶
u

¶
> ¼

µ
w ¬ + c ¶ u ¶ +

µ
c¶

¶ r
+ c

¶
u

¶
: (3.19)

After m iterations of this process, we get, together with (3.18),

¼

µ
w ¬ + c¶ u ¶ +

µ
mc¶

¶ r
+ c

¶
u

¶
> ¼ (w ¬ + c¶ u ¶ + cu) + 1: (3.20)

As m ! 1,
1

m

µ
w ¬ + c ¶ u ¶ +

µ
mc ¶

¶ r
+ c

¶
u

¶
! c ¶

¶ r
u:
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What happens to the zeros of

fm = w ¬ + c ¶ u ¶ +

µ
mc ¶

¶ r
+ c

¶
u

as m ! 1? No zero of fm in (a; b) can tend to either endpoint a or b, since this
would add a vanishing Mi[u] there and we would obtain

#fi j Mi[u](a) = 0g + #fj j Mj [u](b) = 0g > n + 1;

contradicting proposition 2.2 applied to (3.14). Nor can two zeros of fm coalesce at
an internal point xi of (a; b), since this would imply that M0[u](xi) = M1[u](xi) = 0.
But we had already concluded after proposition 2.2 that n(xi) > 2 is impossible for
an eigenfunction u. It therefore follows that as m ! 1, the number of sign changes
of fm in (a; b) remains ­ xed. So, for all su¯ ciently large integers m,

¼

µ
w ¬ + c¶ u ¶ +

µ
mc¶

¶ r
+ c

¶
u

¶
= ¼ (u):

Together with (3.20), this means that

¼ (u) > ¼ (w ¬ + c¶ u ¶ + cu) + 1: (3.21)

On the other hand, consider the function

f¡m = w ¬ + c ¶ u ¶ +

µ
¡ mc ¶

¶ r
+ c

¶
u:

As above,
1

m
f¡m !

µ
c ¶

¶ r

¶
u

when m ! 1 and ¼ (f¡m) = ¼ (u) for su¯ ciently large m. Now we apply the
operator Mn to f¡m m times and obtain

¼ (w ¬ + c¶ u ¶ + cu) > ¼

µ
w ¬ + c ¶ u ¶ +

µ
¡ c ¶

¶ r
+ c

¶
u

¶

> ¢ ¢ ¢ > ¼

µ
w ¬ + c¶ u ¶ +

µ
¡ mc ¶

¶ r
+ c

¶
u

¶

= ¼ (u):

This contradicts (3.21). This contradiction shows that the Jacobian (3.3) indeed
cannot be 0 and the proof of proposition 3.1 is completed.

We now return to the proof of the main theorem. Eigenvalues and eigenfunctions
of (1.1), (1.8) are obtainable by solving the unknown ¬ k(t); : : : ; ¬ n¡2(t); ¶ (t) from
the system (3.2) for every 0 6 t 6 1. Take a ­ xed integer m. It is known that the
system (3.2) has a solution for t = 0 that generates the mth eigenvalue ¶ m and
corresponding eigenfunction um of the (linear) system. Thanks to proposition 3.1,
the implicit function theorem ensures that the solution of (3.2) can be continued
for some t > 0. Let t̂ be the supremum of the values such that (3.2) is solvable for
all 0 6 t < t̂ and assume that t̂ is ­ nite.
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During the process, we normalized the solution u of (1.1), (3.1) by

Nn¡1[u](a) = ¬ n¡1 = 1:

However, since (1.1) is homogeneous, i.e. u is a solution if and only if cu is a solution,
every other normalization is equivalent. Let us renormalize u by multiplication with
a suitable constant, so that

X

i6= i1;:::;ik

(Ni[u](a))2 = 1;

and, in addition, of course, Ni[u](a) = 0, i = i1; : : : ; ik.
What happens to the solution u as t " t̂? By the above normalization, it is obvious

that we can choose a convergent subsequence of initial values. For simplicity, we
denote the limit by ¬ 0(t̂); : : : ; ¬ n¡1(t̂). The corresponding solution u satis­ es the
given boundary conditions. As argued above for lim fm, no zero of u can tend to
either endpoint a or b, nor can two of its zeros coalesce at an internal point of (a; b).
Hence the number of sign changes of u in (a; b) remains unchanged for 0 6 t 6 t̂. By
considering (1.1) at x = a, it also follows that ¶ (t) tends to a ­ nite limit. Therefore,
we can again apply the implicit function theorem, starting at t̂ and continue the
solution of (3.2), contradicting the de­ nition of t̂. This veri­ es that our process
continues, in fact, for all t > 0 and, in particular, holds for t = 1. This proves the
existence of an eigenvalue ¶ m of (1.1) such that the corresponding eigenfunction
has exactly m ¡ 1 changes of sign in (a; b).

Note that the sign of the eigenvalues is determined from the linear problem and
it cannot change with t, since we assume condition 1.1. Thus ( ¡ 1)n¡k ¶ m > 0 for
all m.

The eigenvalues of the linear problem are arranged according to the number
of sign changes of the corresponding eigenfunction. That is, j¶ +̀ 1j > j¶ `j and
¼ (u +̀ 1) = ¼ (u`) + 1 = `. We had already seen that as the parameter t grows,
the number of sign changes remains ­ xed. Is the strict order of the eigenval-
ues preserved in the process? The following proposition shows that no eigen-
values meet as t grows and the nonlinear problem preserves the same ordering
0 < (¡ 1)n¡k ¶ ` < (¡ 1)n¡k ¶ ` + 1 as the linear one.

Proposition 3.2.

(i) Each eigenvalue of (1.1), (1.8) has an essentially unique eigenfunction.

(ii) Let ¶ , · be two eigenvalues of (1.1), (1.8), and u, w the corresponding eigen-
functions. If j¶ j > j· j, then ¼ (u) > ¼ (w).

Proof. First we prove that, for any two functions u, w for which Nn[u] and Nn[w]
are well de­ ned, and constants ¬ , ­ ,

¼ ( ¬ p0¢¢¢pn ¡ 1 ¤ Nn[u] + ­ p0¢¢¢pn ¡ 1 ¤ Nn[w])

> ¼ ( ¬ u + ­ w)

+ #fi j 0 6 i 6 n ¡ 1; ¬ p0¢¢¢pi ¤ Ni[u](a) + ­ p0¢¢¢pi ¤ Ni[w](a) = 0g
+ #fj j 0 6 j 6 n ¡ 1; ¬ p0¢¢¢pj ¤ Nj [u](b) + ­ p0¢¢¢pj ¤ Nj [w](b) = 0g ¡ n:

(3.22)
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As in the proof of proposition 2.1, we start with

¼ (f 0) > ¼ (f ) + #ff(a) = 0g + #ff(b) = 0g ¡ 1; (3.23)

and apply this to the function f0 = ¬ p0 ¤ N0[u] + ­ p0 ¤ N0[w]. By the easily checked
identity

sgn(up ¤ + vp ¤ ) = sgn(u + v); (3.24)

and since N0[u] = a0up0 ¤ , we have

¼ ( ¬ p0 ¤ N0[u] + ­ p0 ¤ N0[w]) = ¼ ( ¬ p0 ¤ up0 ¤ + ­ p0 ¤ wp0 ¤ ) = ¼ ( ¬ u + ­ w):

So (3.23) becomes

¼ ( ¬ p0 ¤ (N0[u])0 + ­ p0 ¤ (N0[w])0)

> ¼ ( ¬ u + ­ w) + #f¬ p0 ¤ N0[u](a) + ­ p0 ¤ N0[w](a) = 0g
+ #f ¬ p0 ¤ N0[u](b) + ­ p0 ¤ N0[w](b) = 0g ¡ 1:

We apply (3.24) with p = p1 to the left-hand side of the last inequality, and sub-
stitute ((N0[u])0)p1 ¤ = a¡1

1 N1[u], so as to obtain

¼ ( ¬ p0p1 ¤ N1[u] + ­ p0p1 ¤ N1[w])

> ¼ ( ¬ u + ­ w) + #f¬ p0 ¤ N0[u](a) + ­ p0 ¤ N0[w](a) = 0g
+ #f ¬ p0 ¤ N0[u](b) + ­ p0 ¤ N0[w](b) = 0g ¡ 1:

Next we repeat the same step with f1 = ¬ p0p1 ¤ N1[u] + ­ p0p1 ¤ N1[w], focusing atten-
tion on the vanishing of N1[u], N1[w] at the endpoints. This gives

¼ (¬ p0p1p2 ¤ N2[u] + ­ p0p1p2 ¤ N2[w])

> ¼ ( ¬ p0p1 ¤ N1[u] + ­ p0p1 ¤ N1[w])

+ #f¬ p0p1 ¤ N1[u](a) + ­ p0p1 ¤ N1[w](a) = 0g
+ #f¬ p0p1 ¤ N1[u](b) + ­ p0p1 ¤ N1[w](b) = 0g ¡ 1:

Summing up the n repetitions of the above inequalities leads us to (3.22).
Now we turn to the proof of (i). Let u, w be two eigenfunctions corresponding

to the same eigenvalue ¶ and suppose that they are linearly independent. On the
right-hand side of (3.22), the n boundary conditions that are satis­ ed by both u and
w are counted. But, if we choose ¬ , ­ so that one additional intermediate function
¬ p0¢¢¢pi ¤ Ni[u] + ­ p0¢¢¢pi ¤ Ni[w] vanishes at one of the endpoints, then the right-hand
side increases by 1 and we get

¼ ( ¬ p0¢¢¢pn ¡ 1 ¤ Nn[u] + ­ p0¢¢¢pn ¡ 1 ¤ Nn[w]) > ¼ ( ¬ u + ­ w) + 1:

By p0 ¢ ¢ ¢ pn¡1 = r, the di¬erential equations Nn[u] = ¶ bur ¤ ; Nn[w] = ¶ bwr ¤ and,
by (3.24), the left-hand side of (3.22) becomes

¼ ( ¬ p0¢¢¢pn ¡ 1 ¤ Nn[u] + ­ p0¢¢¢pn¡ 1 ¤ Nn[w]) = ¼ (( ¬ u)r ¤ + (­ w)r ¤ ) = ¼ ( ¬ u + ­ w):

Thus we arrive at the contradiction

¼ ( ¬ u + ­ w) > ¼ ( ¬ u + ­ w) + 1:
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This contradiction implies that ¶ cannot have two linearly independent eigenfunc-
tions.

To prove (ii), let ¶ , · be two distinct eigenvalues, j ¶ j > j· j, and u, w the corre-
sponding eigenfunctions. We choose f = ¬ u + ­ w as above, with an additional zero
at either endpoint, and obtain

¼ ( ¬ p0¢¢¢pn ¡ 1 ¤ Nn[u] + ­ p0¢¢¢pn ¡ 1 ¤ Nn[w]) > ¼ ( ¬ u + ­ w) + 1:

Since Nn[u] = ¶ bur ¤ , Nn[w] = · bwr ¤ , we obtain

¼ (¶ ( ¬ u)r ¤ + · (­ w)r ¤ ) > ¼ ( ¬ u + ­ w) + 1

and, by (3.24),

¼

µ
¬ u +

µ
·

¶

¶1=r

­ w

¶
> ¼ (¬ u + ­ w) + 1:

Note that, consequently, we must have ¬ 6= 0, ­ 6= 0. We repeat the same argument
m times, beginning with the function ¬ u + ( · =¶ )1=r­ w (but this time without any
extra sign change!), and obtain

¼

µ
¬ u +

µ
·

¶

¶m=r

­ w

¶
> ¼ ( ¬ u + ­ w) + 1:

Since, by assumption, j· =¶ j < 1, we obtain as m ! 1 that

¼ (u) > ¼ ( ¬ u + ­ w) + 1:

Next we begin with the function (· =¶ )m=r ¬ u+­ w and carry out the same argument.
Now the result is

¼ ( ¬ u + ­ w) > ¢ ¢ ¢ > ¼

µµ
·

¶

¶m=r

¬ u + ­ w

¶
! ¼ (w);

and together we have

¼ (u) > ¼ (¬ u + ­ w) + 1 > ¼ ( ¬ u + ­ w) > ¼ (w): (3.25)

Thus ¼ (u) > ¼ (w).

Remark 3.3. The inequality (3.25) was proved for a particular combination ¬ u +
­ w, with an additional zero at one endpoint. If we repeat this same argument for
an arbitrary combination ® u + ¯ w, ( ® ; ¯ ) 6= (0; 0), we get

¼ (u) > ¼ ( ® u + ¯ w) > ¼ (w):

In particular, we have

` > ¼ ( ® u` + 1 + ¯ u`) > ` ¡ 1: (3.26)

Proposition 3.2 also implies that there are no other eigenvalue{eigenfunction
pairs, except those that we constructed by the implicit function theorem. Suppose,
to the contrary, that there exists another pair ~¶ `, ~u` such that ~u` has ` ¡ 1 changes
of sign. (Recall that any non-trivial solution of (1.1) has at most a ­ nite number of
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zeros in [a; b].) Then either ~¶ ` = ¶ `, ~¶ ` > ¶ ` or ~¶ ` < ¶ `, and proposition 3.2 leads
to a contradiction.

The last detail of theorem 1.3 is the separation of the zeros of consecutive eigen-
functions. Let ¶ `, ¶ ` + 1, j¶ `j < j ¶ ` + 1j, be two consecutive eigenvalues and u`, u +̀ 1

be the corresponding eigenfunctions, with ` ¡ 1 and ` simple zeros in (a; b), respec-
tively. Suppose that their zeros do not separate each other in (a; b). Then we check
(and reject) two possibilities.

(a) If u`, u` + 1 have a common zero at x1 2 (a; b), then there exist ¬ , ­ such that
¬ p0p1 ¤ N1[u +̀ 1] + ­ p0p1 ¤ N1[u`] vanishes at x1 (and, of course, every combina-
tion of N0[u`], N0[u` + 1] is zero there). Here, ¬ ; ­ 6= 0, since we had already
seen that no eigenfunction u can satisfy N0[u](x1) = N1[u](x1) = 0. Thus we
have n(x1) > 2, which adds two changes of sign to our count and, as in the
proof of (3.25), we obtain

¼

µ
¬ u` + 1 +

µ
¶ `

¶ +̀ 1

¶1=r

­ u`

¶
> ¼ ( ¬ u` + 1 + ­ u`) + 2: (3.27)

But this contradicts (3.26).

(b) Suppose that u +̀ 1 has consecutive zeros at x1; x2 2 (a; b), but u` 6= 0 in
[x1; x2]. Then there exist ¬ ; ­ 6= 0 such that ¬ u` + 1 + ­ u` vanishes at a point
of (x1; x2) and does not change its sign there (`double’ zero). By the de­ nitions
of N0[u], N1[u] and (3.24), this is also a zero of ¬ p0 ¤ N0[u +̀ 1] + ­ p0 ¤ N0[u`], and
¬ p0p1 ¤ N1[u +̀ 1] + ­ p0p1 ¤ N1[u`] changes it sign there. This adds two changes
of sign to our count and (3.27) again holds, which is impossible by (3.26).

This completes the proof of the separation property, and of theorem 1.3.

Appendix A. Existence, uniqueness and di®erentiability

Theorem A.1. Assume we are given the cyclic system

v0
i¡1 = bi(x)vri ¤

i ; i = 1; : : : ; n ¡ 1;

v0
n¡1 = b0(x)vr0 ¤

0 ;

)
(A 1)

where bi 2 C[a; 1), bi > 0 and ri > 0. If r0r1 ¢ ¢ ¢ rn¡1 6 1, then every solution is
extendable to the whole interval [a; 1). The same holds if vri ¤

i is replaced by vri
i .

Proof. The proof is inspired by [17, lemma 2.1]. Suppose, to the contrary, that a
solution (v0; : : : ; vn¡1) can be continued only until x = !, ! < 1. Choose a point
x0, x0 < !, such that

Z !

x0

bi(s) ds < 2¡ri ; i = 0; : : : ; n ¡ 1:

Integration of (A 1) on [x0; x] yields

vi¡1(x) = vi¡1(x0) +

Z x

x0

bi(s)vri ¤
i (s) ds; x0 6 x < !; i = 1; : : : ; n; (A 2)

where we use the cyclic notation vn ² v0, bn ² b0.
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Let zi(x) = max[x0;x] jvi(s)j. By (A 2),

0 6 zi¡1(x) 6 zi¡1(x0) + 2¡rizi(x)ri; x0 6 x < !; i = 1; : : : ; n: (A 3)

We prove by induction that, for every j = 1; : : : ; n ¡ 1,

0 6 z0(x) 6 const: + ( 1
2
zj(x))r1¢¢¢rj (A 4)

where `const:’ means various positive constants. For j = 1, this is (A 3) with i = 1.
Suppose (A 4) is valid for a certain integer j. Then, by an additional application
of (A 3) with i = j + 1, we get

z0(x) 6 const: + ( 1
2
zj(x))r1¢¢¢rj

6 const: + ( 1
2 (zj(x0) + 2¡rj+1zj + 1(x)rj+1 ))r1¢¢¢rj :

Since (1
2 (a + b))m 6 am + bm for every a; b; m > 0, the above inequality continues

as

z0(x) 6 const: + zj(x0)r1¢¢¢rj + 2¡r1¢¢¢rjrj+1 zj + 1(x)r1¢¢¢rjrj+1

6 const: + ( 1
2 zj + 1(x))r1¢¢¢rj+1 :

This veri­ es (A 4). In particular, for j = n, we have, with zn ² z0 and rn ² r0,

0 6 z0(x) 6 const: + ( 1
2
z0(x))r0r1¢¢¢rn ¡ 1 :

As r0 ¢ ¢ ¢ rn¡1 6 1, it follows that z0(x) is bounded on [x0; !) and so, of course, is
v0(x). Analogously, as a consequence of the cyclic behaviour, one proves that all the
zj(x), and thus the vj(x), are bounded as well. From the di¬erential equations (A 1),
it follows that the v0

0; : : : ; v0
n¡1 are bounded on [x0; !), and so limx ! ! ¡ vj(x) exists

and is ­ nite for each j = 0; : : : ; n ¡ 1. But then the solution can be continued in
a right-hand neighbourhood of !, contradicting the de­ nition of !. Thus ! < 1 is
impossible. Note that, as we took absolute values, the above holds for vri ¤

i and vri
i .

Theorem A.2. Equation (A 1), with ri > 0, i = 0; : : : ; n ¡ 1, and initial value

(v0(a); : : : ; vn¡1(a)) = ( ¬ 0; : : : ; ¬ n¡1) 6= (0; : : : ; 0); (A 5)

has at most one solution. The same holds if vri ¤
i is replaced by vri

i .

Proof. If, for each i, either ri > 1 or ¬ i 6= 0, then there is nothing to prove, since the
right-hand side of (A 2) is Lipschitzian and standard uniqueness theorems hold [9].
Therefore, let ri < 1 and ¬ i = 0 simultaneously, at least for some values of i. As
the proofs for both vri ¤

i and vri

i are identical, we omit the ¤ everywhere.
Let us break the sequence ¬ 0; : : : ; ¬ n¡1 into blocks such that

¬ i = 0; kj 6 i 6 nj ¡ 1;

¬ i 6= 0; nj 6 i 6 kj + 1 ¡ 1;

)
(A 6)

where kj < nj < kj + 1. Due to the cyclic structure of (A 1), we may renumerate
the equations so that ¬ 0 6= 0, ¬ n¡1 = 0. Thus, without loss of generality, we may
assume that 0 = n0 < k1 < n1 < ¢ ¢ ¢ < kq < nq = n.
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We start with a block kj 6 i 6 nj ¡ 1, i.e. ¬ kj¡1 6= 0, ¬ kj
= ¢ ¢ ¢ = ¬ nj¡1 = 0,

¬ nj 6= 0. Near x = a,

vnj¡1(x) =

Z x

a

bnj
v

rnj
nj ds =

Z x

a

bnj
( ¬ nj

+ o(1))rnj ds º const:(x ¡ a);

where º means `equal up to multiplication by 1 + o(1)’ and `const:’ is some non-
zero constant value. Note that all the bi are continuous, positive and bounded near
x = a. Now

vnj¡2(x) =

Z x

a

bnj¡1v
rnj ¡ 1

nj¡1 ds

º const:

Z x

a

bnj¡1(s ¡ a)rnj ¡ 1 ds

º const:(x ¡ a)rnj ¡ 1 + 1:

We prove by decreasing induction that, for all i,

vi(x) º const:(x ¡ a)Pi; i = kj ; : : : ; nj ¡ 1;

vkj ¡1(x) ¡ ¬ kj¡1 º const:(x ¡ a)Pkj ¡ 1 ;

)

(A 7)

near a for suitable Pi. Indeed, we have already computed Pnj¡1 = 1, while

vi¡1(x) =

Z x

a

biv
ri
i ds º const:

Z x

a

bi(s ¡ a)Piri ds º const:(x ¡ a)Piri + 1

for i = kj + 1; : : : ; nj ¡ 1, and similarly for vkj ¡1 ¡ ¬ kj¡1 (vkj¡1(a) = ¬ kj¡1). Thus

Pi¡1 = Piri + 1

= (Pi+ 1ri+ 1 + 1)ri + 1

= 1 + ri + riri + 1 + ¢ ¢ ¢ + riri+ 1 ¢ ¢ ¢ rnj¡1; i = kj ; : : : ; nj ¡ 1: (A 8)

Suppose that the initial-value problem has two solutions, (u0; : : : ; un¡1) and
(v0; : : : ; vn¡1). Then

vi¡1(si¡1) ¡ ui¡1(si¡1) =

Z si ¡ 1

a

bi(v
ri
i ¡ uri

i ) dsi =

Z si ¡ 1

a

biri ²
ri¡1
i (vi ¡ ui) dsi;

where ² i is between vi and ui. For i 2 fkj ; : : : ; nj ¡ 1g, both vi and ui sat-
isfy (A 7), and so does ² i(x) º const:(x ¡ a)Pi . Consequently, near a, the last inte-
gral is approximately

const:

Z si¡ 1

a

bi(si ¡ a)Pi(ri¡1)(vi ¡ ui) dsi:

According to the de­ nition of Pi,

Pi(ri ¡ 1) = Piri ¡ Pi = (Pi¡1 ¡ 1) ¡ Pi;

and since bi is bounded,

jvi¡1 ¡ ui¡1j(si¡1) 6 const:

Z si ¡ 1

a

(si ¡ a)Pi ¡ 1¡Pi¡1jvi ¡ uij dsi; i = kj ; : : : ; nj ¡ 1;

(A 9)
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near x = a. Note that when ri < 1, then Pi¡1 ¡ Pi ¡ 1 = Pi(ri ¡ 1) < 0 and
the integral is singular. This is the source of the di¯ culty, which requires careful
estimates.

The blocks of the other type with ¬ i 6= 0 are relatively simple. As vi; ui º ¬ i 6= 0,
² i º const: 6= 0, and therefore

jvi¡1 ¡ ui¡1j(si¡1) 6 const:

Z si ¡ 1

a

jvi ¡ uij dsi; i = nj ; : : : ; kj + 1 ¡ 1: (A 10)

By assumption, ¬ 0 6= 0 and therefore, for i = n,

jvn¡1 ¡ un¡1j(sn¡1) 6 const:

Z sn ¡ 1

a

jv0 ¡ u0j dsn: (A 11)

From the combination of the inequalities (A 9), (A 10) and (A 11) for i = 0; : : : ; n,
we obtain

jv0 ¡ u0j(x)

6 const:

Z x

a

¢ ¢ ¢
Z sk1 ¡ 2

a

Z sk1 ¡ 1

a

(sk1 ¡ a)Pk1 ¡ 1¡Pk1 ¡1 ¢ ¢ ¢
Z skj ¡ 1

a

(skj ¡ a)Pkj ¡ 1¡Pkj ¡1

Z skj

a

¢ ¢ ¢
Z snj ¡ 2

a

(snj¡1 ¡ a)Pnj ¡ 2¡Pnj ¡ 1¡1

Z snj ¡ 1

a

Z snj

a

¢ ¢ ¢
Z skj+1 ¡ 2

aZ skj+1 ¡ 1

a

(skj+1
¡ a)Pkj+1 ¡ 1¡Pkj+1 ¡1 ¢ ¢ ¢

Z sn ¡ 1

a

jv0 ¡ u0j dsn ¢ ¢ ¢ ds1:

On a small right-hand neighbourhood of a, let z(x) = max[a;x] jv0 ¡ u0j. z(x) is a
positive non-decreasing function, so that

jv0 ¡ u0j(x) 6 const:

Z x

a

: : :

Z sn ¡ 1

a

dsn : : : ds1 £ z(x);

where the iterated integral is similar to the previous one except that the ­ nal
integrand jv0 ¡ u0j is missing. Take a point x where z(x) = jv0(x) ¡ u0(x)j. Such
points exist arbitrarily close to a since v0 ¡ u0 vanishes at a. If we prove that the
iterated integral exists and tends to 0 as x ! a, then we get 0 6 z(x) 6 o(1)z(x).
This implies z(x) = 0 and thus v0 ² u0.

It remains to verify that the iterated integral

Z x

a

¢ ¢ ¢
Z skj ¡ 1

a

(skj
¡ a)Pkj ¡ 1¡Pkj

¡1

Z skj

a

¢ ¢ ¢
Z snj ¡ 2

a

(snj¡1 ¡ a)Pnj ¡ 2¡Pnj ¡ 1¡1

Z snj ¡ 1

a

Z snj

a

¢ ¢ ¢
Z skj+1 ¡ 2

a

Z skj+1 ¡ 1

a

(skj+1 ¡ a)Pkj+1 ¡ 1¡Pkj+1 ¡1 ¢ ¢ ¢
Z sn ¡ 1

a

dsn ¢ ¢ ¢ ds1

(A 12)

exists and converges to 0 in spite of the fact that we may have Pi¡1 ¡ Pi ¡ 1 < 0
for some i.
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Since ¬ n¡1 = 0, the last block of initial values is ¬ i = 0, kq 6 i 6 nq ¡ 1 = n ¡ 1.
We claim that the corresponding innermost integrals are

Z si

a

(si+ 1 ¡ a)Pi¡Pi+1¡1 ¢ ¢ ¢
Z sn ¡ 2

a

(sn¡1 ¡ a)Pn ¡ 2¡Pn ¡ 1¡1

Z sn ¡ 1

a

dsn ¢ ¢ ¢ dsi+ 1 = const:(si ¡ a)Pi ;

i = kq ¡ 1; : : : ; nq ¡ 1 = n ¡ 1:
(A 13)

For i = nq ¡ 1 = n ¡ 1, this is true, as

Z sn¡ 1

a

dsn = sn¡1 ¡ a = (sn¡1 ¡ a)Pn ¡ 1 ;

since Pn¡1 = 1. Suppose that (A 13) is true for an integer i. For i ¡ 1, the corre-
sponding integral is

Z si ¡ 1

a

(si ¡ a)Pi ¡ 1¡Pi¡1 £ const:(si ¡ a)Pi dsi = const:(si¡1 ¡ a)Pi ¡ 1 ;

and (A 13) is veri­ ed for i = kq ¡ 1; : : : ; nq ¡ 1 = n ¡ 1.
In the following block, ¬ i 6= 0, i = nq¡1; : : : ; kq ¡ 1, so the calculation is imme-

diate,
Z si

a

Z si+1

a

¢ ¢ ¢
Z skq ¡ 2

a

(skq¡1 ¡ a)Pkq ¡ 1 dskq¡1 ¢ ¢ ¢ dsi+ 1 = const:(si ¡ a)kq¡i¡1+ Pkq ¡ 1

for i = nq¡1 ¡ 1; : : : ; kq ¡ 2. Advancing from block to block, we ­ nally get that the
integral (A 12) is

const:(x ¡ a)(k1¡1)+ Pk1 ¡ 1 + (k2¡n1¡1)+ Pk2 ¡ 1 + (k3¡n2¡1)+ ¢¢¢ + Pkq ¡ 1 ;

where the exponent is positive. This completes the proof that v0 ² u0. By (A 1), it
now follows that vi ² ui for all i = 0; : : : ; n ¡ 1.

In the proof of proposition 3.1, we need the existence of the derivatives

@vj

@¬ `
=

@Nj [u]

@¬ `

precisely for those components for which ¬ ` 6= 0 in the initial value (3.1). The
following theorem proves that in a neighbourhood of an eigenfunction of (1.1),
(1.6), the solution of (1.10) with initial values (3.1) is di¬erentiable with respect to
the non-vanishing initial values.

Theorem A.3. Let vi(x; ¬ 0; : : : ; ¬ n¡1), i = 0; : : : ; n ¡ 1, denote the solution of the
initial-value problem (1.10), (3.1) and let ~¬ 0; : : : ; ~¬ n¡1 be such that the solution of
the system (1.10), with initial values

(v0(a); : : : ; vn¡1(a)) = (N0[u](a); : : : ; Nn¡1[u](a)) = (~¬ 0; : : : ; ~¬ n¡1);
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corresponds to an eigenfunction of (1.1), (1.8). If assumption 1.2 about the powers
pi is satis¯ed and ~¬ ` 6= 0, then the derivatives

@v0

@¬ `
; : : : ;

@vn¡1

@¬ `

exist at ¬ ` = ~¬ ` and are continuous on the interval a 6 x 6 b. The same holds for
the derivatives @vi=@¶ .

Proof. Consider an initial-value problem

v0 = F (x; v); v(a) = ®;

where v = (v0; : : : ; vn¡1), F = (F0; : : : ; Fn¡1) and ® = ( ¬ 0; : : : ; ¬ n¡1). If the
@Fi=@vj are continuous, then, by Peano’s theorem, z = @v=@¬ ` is the solution of
the variational system

z0 =

µ
@Fi

@vj

¶
z; zk(a) = ¯ k;`

(see [9]). Unfortunately, our system (1.10) does not satisfy Peano’s assumption,
since the coe¯ cients of the corresponding linearized system (3.5),

z0
i¡1 = (a

¡1=pi

i p¡1
i jvij1=pi¡1)zi; i = 1; : : : ; n ¡ 1;

z0
n¡1 = ¶ b

µ
a¡r=p0

0

r

p0
jv0jr=p0¡1

¶
z0;

are discontinuous at points where vi vanishes if pi > 1. Hence Peano’s theorem
is not directly applicable at some points. Such singularities certainly occur at the
endpoints a, b because of the boundary values (1.8) and possibly at other points of
(a; b) where some vi vanish. At all other points, the usual proof of Peano’s theorem
holds.

We start our discussion near x = a. The role of the point x = a is di¬erent to
that of the other points, since the initial values are speci­ ed at a. It is clear by the
initial values that at a,

@

@¬ `
(vk(a)) = ¯ k;`:

However, this is of no help, since we need the existence and continuity of @v=@¬ `. It
was shown earlier that the zeros of vi = Ni[u] do not accumulate. Therefore, vi 6= 0
for all i on some (a; a + ") and @v=@¬ ` exists there. We shall prove its continuity
as x ! a by direct calculation.

Let

v(x; ¬ `) = v(x; ¬ 0; : : : ; ¬ `; : : : ; ¬ n¡1);

v(x; ¬ ` + h) = v(x; ¬ 0; : : : ; ¬ ` + h; : : : ; ¬ n¡1)

be two solutions of (1.10), (3.1) that correspond to two di¬erent initial values (with
further reference to initial values ¬ j , j 6= `, omitted). In (3.3), we agreed to name
the non-zero initial values, for simplicity, ¬ k; : : : ; ¬ n¡2. Here, however, we need their
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exact identity, so we split the initial value into blocks of consecutive zero and non-
zero components, as in (A 6). Since we are interested in ¬ ` = ~¬ ` 6= 0, we necessarily
have nr 6 ` 6 kr + 1 ¡ 1 for some r.

Our calculations are analogous to those in the proof of theorem A.2, with the
powers ri of (A 1) replaced by the corresponding powers in (1.10), i.e. ri = 1=pi,
i = 1; : : : ; n ¡ 1, and r0 = r=p0, so that r0 ¢ ¢ ¢ rn¡1 = 1. Let us start with i ¡ 1 6= `.
First note that vj(a; ¬ `) = vj(a; ¬ ` + h) for all j 6= `. For kj 6 i 6 nj ¡ 1, i ¡ 1 6= `,
due to vi¡1(a; ¬ ` + h) ¡ vi¡1(a; ¬ `) = 0, we obtain, as in (A 9),

vi¡1(si¡1; ¬ ` + h) ¡ vi¡1(si¡1; ¬ `)

h

º const:

Z si ¡ 1

a

(si ¡ a)Pi ¡ 1¡Pi¡1 vi(si; ¬ ` + h) ¡ vi(si; ¬ `)

h
dsi

near x = a. If nj 6 i 6 kj + 1 ¡ 1, i ¡ 1 6= `, then again vi¡1(a; ¬ `+h) ¡ vi¡1(a; ¬ `) = 0,
and in this case we have, analogously with (A 10), that

vi¡1(si¡1; ¬ ` + h) ¡ vi¡1(si¡1; ¬ `)

h
º const:

Z si ¡ 1

a

vi(si; ¬ ` + h) ¡ vi(si; ¬ `)

h
dsi:

Now we turn to i ¡ 1 = `. Recall that the present theorem is only about the case
¬ ` = ~¬ ` 6= 0, so we consider only nr 6 ` 6 kr + 1 ¡ 1. If nr 6 ` < ` + 1 6 kr + 1 ¡ 1,
then, as v`(a; ¬ ` + h) ¡ v`(a; ¬ `) = h, the above equation is modi­ ed as

v`(s`; ¬ ` + h) ¡ v`(s`; ¬ `)

h
¡ 1

º const:

Z s`

a

v` + 1(s` + 1; ¬ ` + h) ¡ v +̀ 1(s` + 1; ¬ `)

h
ds` + 1;

while if ` + 1 = kr + 1 (next block!), then

v`(s`; ¬ ` + h) ¡ v`(s`; ¬ `)

h
¡ 1

º const:

Z s`

a

(s +̀ 1 ¡ a)Pkr+1 ¡ 1¡Pkr+1 ¡1

£ v +̀ 1(s` + 1; ¬ ` + h) ¡ v` + 1(s` + 1; ¬ `)

h
ds` + 1:

If ` 6= 0, then, combining the last integrals together, we have, as in theorem A.2,

v0(x; ¬ ` + h) ¡ v0(x; ¬ `)

h

º const:

Z x

a

¢ ¢ ¢
Z s` ¡ 1

a

µ
1 + const:

£
Z sl

a

¢ ¢ ¢
v0(sn; ¬ ` + h) ¡ v0(sn; ¬ `)

h
dsn ¢ ¢ ¢ ds`¡1

¶
ds` ¢ ¢ ¢ ds1:

The inner structure of the iterated integral is as in theorem A.2, according to the
blocks de­ ned above and is omitted here. It is important only that the index `
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belongs to a block of type nr 6 ` 6 kr + 1 ¡ 1. Therefore, the ­ rst integral is

Z x

a

¢ ¢ ¢
Z sk1 ¡ 1

a

(sk1
¡ a)Pk1 ¡ 1¡Pk1 ¡1 ¢ ¢ ¢

Z snr ¡ 1

a

¢ ¢ ¢
Z s` ¡ 1

a

ds` ¢ ¢ ¢ ds1

= const:(x ¡ a)k1¡1+ Pk1 ¡ 1 + (k2¡n1¡1)+ ¢¢¢+ Pkr ¡ 1 ¡ 1 + (`¡nr¡1)

and
¯̄
¯̄ v0(x; ¬ ` + h) ¡ v0(x; ¬ `)

h

¯̄
¯̄

6 const:(x ¡ a)k1¡1+ Pk1 ¡ 1 + (k2¡n1¡1)+ ¢¢¢+ Pkr ¡ 1 ¡ 1 + (`¡nr¡1)

+ const:

Z x

a

¢ ¢ ¢
Z sn ¡ 1

a

¯̄
¯̄v0(sn; ¬ ` + h) ¡ v0(sn; ¬ `)

h

¯̄
¯̄ dsn ¢ ¢ ¢ ds1:

The innermost integral
R sn ¡ 1 j ¢ ¢ ¢ j is naturally increasing, so we replace its upper

limit by x > sn¡1. There remains
¯̄
¯̄v0(x; ¬ ` + h) ¡ v0(x; ¬ `)

h

¯̄
¯̄

6 const:(x ¡ a)k1¡1+ Pk1 ¡ 1 + (k2¡n1¡1)+ ¢¢¢ + Pkr ¡ 1 ¡ 1 + (`¡nr¡1)

+ const:(x ¡ a)k1¡1+ Pk1 ¡ 1 + ¢¢¢ + Pkq ¡ 1¡1

Z x

a

¯̄
¯̄ v0(s; ¬ ` + h) ¡ v0(s; ¬ `)

h

¯̄
¯̄ ds:

By Gronwall’s inequality,

¯̄
¯̄ v0(x; ¬ ` + h) ¡ v0(x; ¬ `)

h

¯̄
¯̄

6 const:(x ¡ a)k1¡1+ Pk1
+ (k2¡n1¡1)+ ¢¢¢+ Pkr ¡ 1

+ (`¡nr¡1)o(1);

with the details of the last term unimportant. Note that all `const:’ terms above
are independent of h.

We have already mentioned that @v0=@¬ ` exists on (a; a + "). By the last esti-
mates, we conclude that @v0(x)=@¬ ` ! 0 as x # a. A similar argument holds for
the other @vi(x)=@¬ ` and for i = `, @v`(x)=@¬ ` ! 1. This completes the continuity
of @v=@¬ ` near x = a.

At an internal point c 2 (a; b), the situation is simpler, since we know that vi

may have only simple zeros. If pi 6 1, then the term jvij1=pi¡1 in (3.5) is regular
and causes no di¯ culty. On the other hand, if pi > 1, then, near x = c,

jvij1=pi¡1 º jx ¡ cjr; with r > ¡ 1;

and the system (3.5) is of the form

dz

dx
= jx ¡ cjrA(x)z; (A 14)

with a continuous A(x). A change of variable s = (x ¡ c)r + 1 ¤ transforms it into

dz

ds
=

1

r + 1
~A(s)z(s);
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with a di¬erentiable solution z(s) at s = 0. Consequently, z(x) = z(c + s1=(r + 1)) is
continuous (but with unbounded derivative!) at x = c in spite of the mild singularity.

Finally, we come to the endpoint x = b. By the boundary values (1.8), we know
that n ¡ k of the vi vanish at x = b, so system (3.5) is singular there. Let

Nj [u](b) = 0; j = · ; · + 1; : : : · + `;

N · + +̀ 1[u](b) 6= 0

be a block of consecutive vanishing vj . Then, as in (A 7) and (A 8), we obtain that,
for all i, · 6 i 6 · + `,

vi(x) º const:(x ¡ b)Pi ;

with

Pi = 1 +
1

pi+ 1
+

1

pi + 1pi + 2
+ ¢ ¢ ¢ +

1

pi + 1pi + 2 ¢ ¢ ¢ pi + `
:

Here, we have replaced ri by 1=pi, i = 1; : : : ; n ¡ 1, and r0 by r=p0. However, as
remarked after the statement of assumption 1.2, we will, for convenience, write 1=p0

in place of r=p0. Thus, in (3.5),

v
1=pi¡1
i º (x ¡ b)Pi(1=pi¡1)

near b. If pi 6 1 for all i, · 6 i 6 · + `, this expression is continuous and the
corresponding equation in (3.5) presents no di¯ culty. Negative powers of (x ¡ b)
and a singularity occur in (3.5) when pi > 1. As in the previous discussion, the
solution of (3.5) will nevertheless be continuous at x = b if Pi(1=pi ¡ 1) > ¡ 1
whenever vi(b) = 0. Now

Pi

µ
1

pi
¡ 1

¶
=

µ
1 +

1

pi + 1
+

1

pi+ 1pi+ 2
+ ¢ ¢ ¢ +

1

pi+ 1pi+ 2 ¢ ¢ ¢ pi+ `

¶µ
1

pi
¡ 1

¶

= ¡
µ

1 +
1

pi+ 1
+

1

pi + 1pi + 2
+ ¢ ¢ ¢ +

1

pi + 1pi + 2 ¢ ¢ ¢ pi + `

¶

+

µ
1

pi
+

1

pipi + 1
+ ¢ ¢ ¢ +

1

pipi + 1 ¢ ¢ ¢ pi + `¡1
+

1

pipi + 1 ¢ ¢ ¢ pi+ `

¶
:

One possible way to ensure that this is bigger than ¡ 1 is to assume that

1

pi
> 1

pi + 1
> 1

pi+ 2
> ¢ ¢ ¢ > 1

pi+ `¡1
> 1

pi+ `

for all i, · 6 i 6 · + `. Then the expression above is not less than

¡ 1 +
1

pipi+ 1 ¢ ¢ ¢ pi + `
> ¡ 1:

The lack of symmetry between the endpoints a and b is only an artefact of our
choice of initial value. We may interchange the roles of a and b and make analogous
assumptions for blocks of vi vanishing at x = a. This is precisely our assumption 1.2.

The proof for @vi=@¶ is similar.
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