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Abstract. A new method for asymptotic integration of linear systems of ordinary differential equations is proposed and studied.

It is based on the introduction of a certain integral equation that pinpoints sufficient conditions for asymptotic integration.
These conditions serve as a framework from which new and old theorems are derived. In particular the fundamental theorems
of Levinson and Hartman-Wintner are shown to follow from one and the same scheme. The new theorems in asymptotic
integration are shown to be best possible in a certain sense. Examples are given that are not amenable to other techniques.

1. Introduction
The asymptotic theory of dimensional linear differential systems
Y' = A@R)Y,

whereA, Y aren x n matrix functions asks for a representation of fundamental soluti@fjsof (1.1) in
the vicinity oft = oc. Its importance can hardly be overestimated for more reasons than one. Firstly for
its own sake. Secondly for the reason that the asymptotic behaviour of solutions of nonlinear problems
require quite often asymptotic integration of a linearized problem. A comprehensive account of this
“nonanalytic theory” is given in the textbook [3]. Since the appearance of [3] many new results were
published. See, e.g., [1,2,14,15,17].

We assume that the differential equativh= A(t)Y is given in the form

Y' = (D(t) + R(t))Y, (1.1)

D(t) = diag{Mi(t), ..., Au(®)},  R() = (rjx®)] 41—y (1.2)
which is widely discussed in the literature. It is also observed that the diagonal elements and the off-
diagonal elements aR(t) play different roles. Hence it makes sense to place all diagonal elements of

Eq. (1.1) inD(t) while the perturbation ternR(¢) consists only of off-diagonal terms. This convention
will be assumed throughout the rest of our work.
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Since a fundamental solution of the unperturbed equatioa DY is

B(t) = exp( /t ; D(s) ds), (1.3)

one may hope that an asymptotic representation of a fundamental solution of (1.3) be given by

Y(O) = (I + Q) exp( /t " Ds) ds) (1.4)

with Q(t) — 0 ast — oo. Another option is to look for a solutiolf (¢) of (1.1) that is represented as
Y =& + P),ie.,

Y(t) = exp< /t: D(s) ds> (I + P@)) (1.5)

with another unknown perturbatioR such thatP(t) — 0 ast — oo. The distinction between (1.4)
and (1.5) makes it worthwhile to repeat the definition of [6] of an almost diagonal system.

Definition. Let D(t) € Cla, o) be a diagonal matrix and l€t(t) € C[a, o) be such that its diagonal
elements are all zero. We say that the system (1.1) is “right almost diagonal” if it possesses an asymptotic
representation (1.5) witl?(¢) € C[a, oc] and limP(t) = 0 ast — oo. Similarly, if representation (1.4)

holds, the system (1.1) will be called “left almost diagonal”.

The integration of (1.1) is strongly related to the Levinson dichotomy conditifmnseach pair of
integers o # G and for all 7and ¢ suchthat a < 7 < ¢ < oo, €ither

ot "t
/ Re(\, — Ag)ds — oo ast — oo and / Re(\a — Ag)ds < K1 (Dicl)

or
t
/ Re(\ — A5)ds > Ko, (Dic2)

where K1 and K are some constants.

Note that the dichotomy conditions may be written in other forms. For example, [3] uses another
equivalent formulation.

Levinson utilized an extra similarity transformation which rediagonalizes- R. This was further
enhanced in [11,12] in which it was shown how to transform (1.1) via repeated diagonalizations

Yo=Y, Yio1=(U+Q)Y;, j=1,...,N, (1.6)
so that() j(co) = 0 into a system

Yy = (Dn(t) + Rn () YN (1.7)
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and so that the final formula of asymptotic integration is given by

N

t
Yty =[] (I +Q;®) exp( / D (s) ds). (1.8)

=1

This ultimately derived differential equation (1.7) fgx; is shown to satisfy the conditions of Levinson’s
theorem, thus becoming asymptotically integrable. HoweMgr(t) does not coincide necessarily with
D(t) which consists of the eigenvalues of the unperturbed system.

Our approach differs from the established trend that is manifested in [3] in three essential features.

(i) The first is that we strive to show that (1.1) is almost diagonal without having to resort to addi-
tional transformations of the form (1.6).

(i) Secondly, the result of our asymptotic integration is formula (1.4) rather than (1.8). While (1.4)
and (1.8) seem similar, there is an essential difference between them. In (1.4) there appear the
eigenvalues of the original diagonal matfixand so they preserve the original physical meaning,
which is in contrast to (1.8). (In the setting of quantum mechanics, the “physical meaning” of
the eigenvalues of a system, given by the elementd,adre of great importance since they are
proportional to the energy levels of a quantum mechanical system.) Another drawback of (1.8)
is that the calculation of the eigenvaluesiof; may be a laborious task. The same difficulty is
inherent in the Levinson’s theorem, where the eigenvaluds ¢f R need to be calculated.

(iii) The third feature is that we do not utilize Levinson’s theorem as our main weapon. Indeed, we
derive Levinson’s theorem as a byproduct of our method and consequently reconfirm that the
off diagonal elements in (1.1) need not be absolutely integrable in order to affect asymptotic
integration. Some recent reconfirmation of this is given by [1,14,15,5,17].

We benefitted in this work from our study [5] whe|rﬁf Re(\, — A\g)ds| < Bforall 7, t, a, S.
However we could not use in here the precise scheme of asymptotic integration in [5] as the kernel of a
certain integral equation utilized in the process would have come out to be unbounded. Consequently we
had to introduce substantial modifications to the technique in [5] and produce an asymptotic formula of
the form (1.4) rather than (1.5).

The order of events in this paper is as follows. In Section 2 we derive an integral equation for the
perturbation matrix Q. In Section 3 we formulate Theorem 1 that is the point of departure from which new
and old theorems spring. We also show in Section 3 without any extra linear similarity transformations
how Levinson’s theorem as well as the Hartman—-Wintner theorem follow from one and same formulas
albeit by using different estimates of the same integrals. In Section 4 we apply integrations by parts that

bring out the important fact that quotients of the typg /(A — A\3) play an important role in asymptotic
integration. Section 5 is devoted to examples and comparisons.

2. Someformal calculations

Let @ be the solution (1.3) of the unperturbed equafidn= DY, i.e.,®' = D®. With this ® we put
Y = &(I + P)into (1.1) to get

D&(I + P) + &I + P) = (D + R)®(I + P),
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i.e.,
P' =& 1R®(I + P). (2.1)

Let
K(t) = & 'R® = exp(— /t : D(s) ds) R(t) exp< /t ; D(s) ds). 2.2)

HereR(t) = (rju(t) =1, K () = (rjx(t) €xp [y, —(A;—Ax) ds) . _;. From now onf;’ (Aa(s)—As(s)) ds
will be written in an abbreviated fornfi, (Ao — A) ds.
By the notation (2.2), Eg. (2.1) becomes

P'=K+KP, (2.3)
or, componentwise,

ton ) d n — (" v—A)d
St 5 e TS0, k=1, @4

h=1

Pin(t) = rin() e

Instead of this differential equation, we shall consider an integrated version. The limits of integration
of individual terms may be different, so at present we denote them formally,a$he exact value of
each/;;, will be determined in the sequel. Accordingly,

t 1 n t 1
~ [0y A d ~ 10y —an)d
pjk(t):/z rik(t) e Jig@s=s sdt1+2/z rin(t1) € Jig = “pr(te) dt1. (2.5)

J

The integrated version obviously implies the original differential equation. Formally (2.5) will be written
as

t t
PO= [ Keyda+ [ KePe)d, (2.6)
L) L)
where (L) denotes the matrix of lower limit€ (). Next we integrate again by parts the last term of (2.6):
t t
PO= [ Keyda+ [ KP)d
L) L)

t t to
-/ [ K(t) dtl} P(t2) dt
t1=(L) (L) LS(L)

_ /(; K(t1) dtr + { /( ; K(t) dtz] P(ty)

= /(;K(tl) dty + [ /(;K(tz) dtz] P(t) - /(; [ /(;;K(tz) dtz] [K(t1) + K(t1)P(t1)] dta. (2.7)
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Denote
)= [ Ky,
(L)
vatt) = | ; MK (1) o = | ; | /(; K (1) cha| ()
With this notation (2.6) becomd3(t) = Mi(t) + f(tL) K(t1)P(t1) dt; while (2.7) may be rewritten as
(I — My(t)) P(t) = Ma(t) — Mo(t) + /(; Mi(t) K (t1)P(t1) dts. (2.8)

So far we followed the scheme in [5] which was specialized to differential systems where

t
/ Re(\, — A\g)ds| < B, forallmt, a,3=1,...,n. 2.9)

However when (2.9) is violated, the kernel of the integral equation (2.5) cannot be made bounded. Con-
sequently we introduce a matrix(t) = (g;;(t)) related toP(t) via

&I +P) =1 + Q)P (2.10)

and proceed to find an asymptotic representation of the idrm (I + Q)@ (i.e., (1.4)) rather than
Y = &(I + P) (that is (1.5)). The relation (2.10) is equivalent to

P(t) = o7 1)Q)D(t). (2.11)

It will turn out in the sequel that the resulting integral equation@onas a bounded kernel under fairly
broad conditions when the lower limits,3 are properly chosen. It is noteworthy that by (2.11) the
element;;(t) = ¢;;(t) expfti()\l- — A;)ds need not be bounded although(t) — 0 ast — oc.

One may wonder if there should be any advantage to the representation (1.4) over (1.5) and vice versa.
In addition to the advantages of the representation (1.5) in wave propagation problems like quantum
mechanics and acoustics [8,9], the representation (1.5) has definite merits when tackling the “connection
problem”. See [7].

After the substitution of (2.11) into Eq. (2.8) it becomes

(I — My(1)) D H(6)Q)D(t) = Ma(t) — Mo(t) + /(; My(t1) K (t1)®(t1)Q(t1)P(t1) dt1.

Multiplication by &(¢) from the left-hand side and &y —*(¢) from the right-hand side leads to
(I = (M) () Qt) = B(H)Ma(t)d (1) — (1) Ma(t)D (1)

+ /(; B(t) [Ma(t1) K (t1) P H(t1)Q(t1)D(t1)] & (t) ot 1. 2.12)
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This is our basic integral equation for the unkno@(t). Note that a direct substitution &f = (I + Q)@
into the differential equation (1.1) leads to a differential equation

Q' =D+ R)Q-QD +R,

which is far less convenient than the differential equation (2.3). Consequently, the derivation of the
integral equation (2.12) fap is simpler. A different point of departure is utilized in [19, p. 165].
Consider the ternd(t) M1 (t)®~(t) which appears on both sides of (2.12).

Fii() = #0010 = 20) [ Ko d #0)
(L)
—00) [ # RO At ) = [ S8 M REH 0 do
(L) (L)
A typical entry of My, say entry &, 3), is

[

[e3

(Aa—Ag) ds

Tag(tl) eftl dtl. (2.13)
B

Next we turn to the integral term in (2.12),
t
|, FOMRDK )2~ QU220 o (2.14)

By substitution of the proper expressions faf(¢1) and K (¢1) and reorganizing the functiorns, &1,
it becomes

[ o0 I * 5 R(t)B(12) drz] [0 (1) R(t)0(02)] [ ) QU)o 0 iy
(L) (L)
-/ " pys (k) I * b0 (1) Rit2)P(2) b (1) diz| R () b, (219
(L) (L)

The internal integral is precise@]\l(tl) whose elements had been calculated in (2.13). Consequently the
(v, 7) term of (2.15) is

't - 1 “(Aa—Ag) ds " a—Ay) ds
/ <Z { / rag(tz) ele O ) dtz] R(t)Q(t)] ,, 0 ) . (2.16)
tay \ g=1 L/lap
A typical term (3, ) of R(t1)Q(t1) is >°,—1 750 (t1)qu4(t1). When we substitute it in (2.16), we obtain

4+ moon t 4 B . . B i
/ 2.2 ([/z raptta el dtz] routez) el )qw(tl) it (2.17)
af

bay =1 =1
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Consider an individual term in the double sum (2.17) that contains the sole elemén} of the matrix
Q(t1). Itis given by

tl - S ' o S
/é ({ / " raplty) el T dtz]rﬁu(tl) gl oA )qw(tl) ;. (2.18)
Y =1

The term®M,d 1 on the right-hand side of (2.12) is calculated similarly.
t "t1
HOM0)0 ) = 00) [ | [0 0 R1)002) dbo | [9 e R()P()] 01297 )

= [ owe i) |/ % ()P () REDD(E)D (1) die| Bpee i @19)
(L) (L)

Notice that (2.19) is obtained from (2.15) by substituting the identity matrix inste@{tef in (2.15) or
d,~ instead ofg,(t1). Hence the, ) term of (2.19) is

n

t t _ s
/é < Z |:/g Taﬁ(tZ) ef (o= —Hp)ds dt2:| T'gfy(tl) eftl(ka A)d ) dt]_. (220)

p=1

3. A framework for asymptotic approximation

The existence of the asymptotic representation (1.4) depends on the availability of a s@ution
of (2.12) such that)(t) — 0 ast — oo. This will be provided in the following general principle.
Our later tasks will be to show that (i) it may be reduced to practical criteria and (ii) it includes many
known results about asymptotic integration.

Theorem 1. If there exists constants /3 < oo such that for all o, 3, v, v, a # 3, B # v,

t toy s
/ Tag(tl) eftl()\a As)d dtl — O, (31)

Zag
tl N d t e d
[ /E rag(tz) el 02 Sdtz]rﬁy(tl)efn“ Ay)ds
af

/t
Lo

ast — oo, then EQ. (1.1) has an asymptotic representation (1.4) where (Q isa solution of Eq. (2.12) such
that Q(t) — Oast — oo.

dt; — 0 (3.2)

Proof. Recall thatR is an off-diagonal matrix, s@,, = 0.

Conditions (3.1) and (3.2) ensure that the element$ahd—, dNM>d~! of the integral equation
(2.12) tend to 0 as — oo. Consequently we multiply (2.12) from the left-hand side by the inverse
matrix S(t) = (I — ®(t)M1(t)d~1(t))~* and get

Q) = V() + L[QI®), (3.3)
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where
L[QI(t) = S(t) /( ; B(t) [M1(t1) K ()P (t)Q(t)P(t1)] 0~ (1) dt

and
V(t) = S (@) Mit)D () — D) Ma(t)D (1))

SinceS(t) — I, ML, dMod~1 — 0, we havel/(t) — 0 ast — .

Suppose thaf)(t) is indeed a bounded solution of (2.12) on some intervabd). For any bounded
matrix valued functionA(t) let [|AQ®)[| = 3=,; [a;;(t)| and let||A]l = supcjq.o0) [[A@)]]- In the integral
equation (3.3) the termg,, of Q appear inside integrals of the type (2.18). We bound (2.18) from above

by
t
/.

n

D

B=1

dtq

t1 “1ha—Ag)d " Ma—A)d
A A Y A e LA R /)
af

Denote

N(t) = max
a,B,y,v

/t
Lomy

t1 T (Aa—Ag)d ' Ma—Ay)d
|:/£ ra,@(tZ) eftz( ﬁ) Sdt2:| T'gy(tl) eftl( 'y) S
apf

dtll.

Thus we get

IR < [V + n?|S® NG IQI-

Now, by (3.2) N(t) may be made as small as we want for sufficiently large valugs Bdkea large
enough so that?||S||N () < p < 1 on [a, c0). Then, under the present assumptions

IV

QN < 7—.
1-p

With these values of and p we complete the proof of the existence @fby a standard iteration.
Define the sequence

Qo=V, Q;=L[Q;-1], j=1,2,....
Then

1Q5+1(8) = Q)| < [I£[Q5 — @j-alll < pIQs — Qj-all,
and also

1Qs+1 = Qsll < pllQ; — Qjall-
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Hence, the sequencg;(t) converges uniformly or®[a, oc) to a limit function Q(¢). It is evident that
Q € Cla,00) and it is the unique solution of the integral equation (3.3). ConsequentlyalsoC?.
SinceV (t) — 0, 5(t) — I andN(t) — 0, it follows that lim_., Q) =0. DO

What is a reasonable choice of the limits of integratign? We shall always choose the limits of
integration of each term in (2.5), (2.13) and (2.16) so that the kerneﬁle(m — Ag)ds that it contains
will be bounded by the corresponding dichotomy condition.

If (o, B) satisfies the dichotomy condition (Dicl), the limit of integration of the corresponding term
will be ¢35 = to. If (o, 3) satisfies the dichotomy condition (Dic2), we choose £, = .

The relations (3.1) (and (3.2)) demonstrate the lack of symmetry that is inherently built into Theorem 1,
namely, that various perturbation terms are required to satisfy different smallness conditieng:) If (
satisfies the dichotomy condition (Dic1)e((3) € (Dicl), for short) ther(,,3 = to and

t O \a)ds
() = / Taﬁ(tl)eftl()\a A gy (3.4)
to

has the kernel exﬁl()\a — Ag) ds which is bounded from above by‘efor t; < t (and tends to O as
t — o0). If (o, B) € (Dic2) (i.e., (, B) satisfies the dichotomy condition (Dic2)) then the integral in (3.1)
is

o0 t _ s
() = / rag(ty) a0 % gy (3.5)
t

and fort, > t the kernel is bounded uyexpffl()\a — \g)ds| < e Kz,
We wish to show that some well known results follow, naturally, from our general framework.

3.1. Comparison with Levinson's theorem

Levinson’s theorem as presented by [3] claims that if the dichotomy condition holdB anfi* then
(1.1) has the asymptotic solution (1.4).
Note that in the traditional formulation of Levinson’s theorem it is not assumedtigoff-diagonal,
as we do. However, even if the diagonal termsoére moved intaD and ); is replaced by\; + r;; it
makes no essential difference in the asymptotic solution (1.4) sipeeL?.
We show that this basic result can be deduced from our framework. For this one must verify that (3.1)
and (3.2) hold. Let us start with (3.1).
If («, B) satisfies (Dic2) then the integral in (3.1) is

00 t _ s 0o
’ | rasten efiyPa0)d dt1’ <e ke [T ra(t)] da — 0, (3.6)
t t

since Rejfl()\a —A\g)ds < —Kpfort < tg.
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If (o, B) satisfies (Dicl) we formulate the calculation of (3.1) as a lemma for further applications:

Lemma. If (o, B) € (Dicl) and r,5 € L* then

/t
to

Proof. Heretg <1 <t < andjfl()\a — Ag)ds < K1. We split the integral into two parts

T
hlp= |
to

and for any given, small > 0 we choose a fixed’ such that

t
70046,(151) eftl()\a—Aﬁ) ds

dty — 0 ast — co. 3.7)

" Ma—Ag)d t " Ma—Ag)d
Tag(tl) eftl( p)ds dtl—i-/ ‘Talg(tl) eﬂl( p)ds dtq
T

t 00
I < / [rap(ty)| €5t dty < eK1/ |Tap(t1)] dt1 <
T T

NI ™

for all t > T'. With this fixedT'

T " Ma—Ag)d T
I :/ 70046,(151) eftl( 3)ds /
to to

According to (Dicl) the first factor converges to 0 fas+> oo while the second one is bounded by
ef1 ftzo |’I“ag(7f1)|dt1. O

e Ta—Ag)d
dtl = ‘efT(AQ Ag)ds Tag(tl) eftl( p)ds dtl.

The integral in (3.2) may have four different forms:

[eS) 9] t _ s t e s
/ H/t rag(tz) ele o) dtz]%(tl)efﬁ“ A
1
if (o, B) € (Dic2), (o,7) € (Dic2) (3.8)
00 t t1 . s t -~ s
/t H/tlraa(tz) o) dtz]%(tl)efn““ I gy
0
if (o, B) € (Dicl), (o, ) € (Dic2) (3.9)
t 00 t1 -~ s t e s
/t M rag(t2) els Co ) dtz}%(tl)efn“ ]
0 1
if (o, 8) € (Dic2), (o, 7) € (Dicl) (3.10)
and
t t i1 _ s t o s
/ Utlmwz)eftz Bado)d dtz}%(tl)efn“ M
0 0

if (o, 8) € (Dicl), (o, 7) € (Dicl). (3.11)
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For (3.8) and (3.9} < t; < oo, SOt; — oo ast — oo. Consequently the internal integral is o(1) as
t — oo either as in (3.6) (for (3.8)) or by (3.7) (for (3.9)). Now the estimate for the outer integral follows
easily.

For (3.10)t2 > t1, (o, B) € (Dic2), so the internal integral is bounded by

o t1 )\a—>\ d o
‘/ Tas(t2) eftz( o) Sdtz‘ < / [rap(t2)| €2 dt,
t1 to

t
and ft’; |78 (t1) eftl(A“*A”)dﬂdtl — 0 as in the lemma, sincex(v) € (Dicl). For (3.11)t, < t1,
(o, B) € (Dicl), so the internal integral is bounded by

t1 1 a— d [ee)
’/t ras(t2) eha o) sdtZ‘ < /t |rap(t2)] €+ dt
0 0

and the estimate of the double integral is completed as above.
The recent calculations hint that addition of integrable terms to Eq. (1.1) has no influence on the
asymptotic behaviour of its solutions.

Theorem 1’. If the assumptions of Theorem 1 hold and the elements of the matrix S(t) = (s;;(t)) are
in L1, then the equation

Y' = (D) + R(t) + S(t))Y
has as well an asymptotic representation (1.4).

Proof. All one has to show is that if, is replaced by .5 + s.3 ands,s € L, then (3.1) and (3.2)
continue to hold. This is verified along the same lines as the previous calculations.

3.2. Theresults of Hartman—Wntner and Behncke-Remling
Hartman and Wintner [13] proved that if

(@) |Re(n—Ag)| =c¢>0, a#p,

(3.12)
(b) Rt)eLP, 1<p<2,
then (1.1) has the asymptotic solution (1.4).
Behncke and Remling [1] proved that if
(@) |Re(\q —Ag)| = ct™B, ¢>0, ans = aga, aap <1, a # 3,
(b) raptles € LP, p>1, . (3.13)
©) Pbap = aay o =MAgans <1, =+ =1,
p P

then

t
Ya(t) = (ea +0(1)) eXp/t (Aa(8) + Taa(s) +0(s™)) ds.
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(In [1] R is not assumed to be off-diagonal.) Since= max;(a.;) < 1 and of~“*) is not necessarily
in L1 (anp, bas May be even negative!), this approximation is not necessarily an asymptotic integration
in the sense of (1.4). Nevertheless, it is closely related to the Hartman—-Wintner theorem and a small
variation of the conditions will yield a similar result with a strict estimate, without the%() term.

We start to establish the validity of (3.1) under assumptions similar to (3.13). K.Re(\g) >
ct%# > 0 then ¢, 3) € (Dic2) and we take¢/,3 = oo. Then fort < t; < oo, fttl()\a — Ag)ds <

fttl cs~%s ds < 0 and (3.1) is bounded from above by

o0 t —aag d o0 —agg+1 _aaﬁ+1
/ rapl(ts) Gftl “ Cdty = / 7o (ts) € it )/(aas+1) g,
¢ t
1/p

0 1/p oo r o, L —a —ang+1
< </t (|Tozﬁ|(tl)tliaﬁ)p dt1> </t thaﬁp epC(t aﬁ+1_t1 B )/(—aaﬁ-i-l) dt1> ) (314)

The first integral tends to 0 sinegst’# € LP. For the second integral we need the asymptotic approx-
imation

/.oo o e(tu+1fsu+1)/(1/+1) ds ~ V. (315)
t

(Show by the I'Hospital rule that linf>® s# e="""/(“+D ds /tn—v e=#"/(+1) — 1) According to this
estimate withy = —p'bas, v = —a,g, the second factor of (3.14) behaves@g'bes—(~as)/?" when
t — oo and it tends to 0 provided that,g — p'b,s < 0.

If Re(\o — A\g) < —ct™%# < 0 then ¢, ) € (Dicl) and we take/,3 = to. In this case we are
interested in

t t —_cs %ap d
/ ‘ra,@‘(tl) eftl “ 3 dtl
to

t 1/p t , L a —ag il 1/p
< </t (|Taﬁ|(tl)t?_aﬁ)p dtl) (/ t;baﬁp e P c(t a6+17t1 B )/(7aafg+l) dtl) ) (316)
0

to

Now the first integral is bounded and the second one behawés?dss—(-a)/?" _, 0 whent — oo,
due to the estimate

/.t o e,(tu+1fsu+1)/(1/+l) ds ~ th7, (3.17)
1

which is similarly verified.
Forp = 1 (3.14) is replaced by

00 t s—%ab g
/ [Tapl(t1) elu™ *dty
t
tfaaﬁ‘i’l _ tIaﬂﬁ+l

e b b
< t1)t,*? dt1 x max( ¢ a"ex< ))
/t |Taﬁ|( 1) 1 1 t1>t< 1 p{c —lag + 1

> b
= [ el diy 70,
t

S0 (3.13(c)) is replaced by, > 0.
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The relation (3.2) may again have the four forms (3.8)—(3.11) and it is treated as in our proof of the
Levinson theorem. First we show that the internal integrals either tend to O or are, at least, bounded. At
the second step we see that the double integrals tend {@&if > a., i.e., if

p' ' min{bg,} > max{aa},

orbg, > 0inthe case = 1.

This yields a strict asymptotic result in the style of [1]. (We do not attempt to reproduce the precise
result of [1] as it contains a somewhat nontraditional asymptotic statement). It can be formalized in the
following theorem the proof of which is now superfluous.

Theorem 2. If

(@) [Rea —Ag)| = ct™, ¢>0,a <1, a#pf,
(b) ropt® € LP, p > 1,
(€ pb>a, I/p+1/p =1,

orif

(@) IReq —Ag)| = ct™, ¢>0,a <1, a#p,
(b) ropt® € L, b >0,

then Eg. (1.1) has an asymptotic solution (1.4).

The Hartman-Wintner theorem is of course included. Noted¢hatmay be even negative as long as
(c) holds.
4. An explicit criteria

Theorem 1 formulates a general principle for asymptotic integration. In this section we obtain explicit,
simple criteria which will enable us to verify that the assumptions (3.1) and (3.2) really hold. This is
done through systematic integrations by parts of the integrals in (3.1) and (3.2). under the additional
assumption thak is differentiable.

Theorem 3. The conditions of Theorem 1 hold under the following assumptions: for every a # 3, v

)\Oj”iﬁ)\ﬁ —0 ast— oo, 4.1)
/

Tap 1
— L, 4.2
(AQ—AB) © (4-2)

/

o0 T
ryt/ ‘( af )‘dteLl 43
3u(t) Sy 1 (4.3)

and for («, 3) such that Reft()\a — A\g)ds — —oo (i.e, (o, 3) € (Dicl)) also

t
ran(t) o 1 (4.4)
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t/or " [ Ma—Ag)d
75, (t) <%> el “dt, € LY (4.5)
to a T NG

Proof. We begin to show that (4.1) and (4.2) imply (3.1). By integration by parts
t toy s

Lo

Tap f; Aa—Ap)ds Taf t ( Tas(t1) ),e[t(/\cx)\@)ds
= — ga e af _ t P EE— t dt . 4-6
)\oz_)‘,@( IB) )\a_)\ﬁ()+ lop )\04_)‘,3 ' 1 (4.6)

(Expressions of the form(t)/g(t) will be abbreviated for simplicity by’g ®).)
If (o, B) € (Dicl) then/,3 = to and the right-hand side of (4.6) is

Top eft (Ma—Ag) ds Tap t ( Tap(t1) )’eft (Ma—Ag)ds
t t - —(¢ R t dt1. 4.7
)\a_)\ﬁ(o) 0 )\a_)\ﬁ()Jr o e — A 1 1 4.7)

Ast — oo the first term goes to 0 by (Dicl), the second by (4.1) and the third by (4.2) and the lemma.

t
If (0, ) € (Dic2) thenlus = o0, ras/(ha — Ag)(00) = 0 by (4.1) andje/<Pa29)%| < ek
by (Dic2), so the first term on the right-hand side of (4.6) is 0 and there remains

Tap Tozﬁ(tl) ), ; (Aa—Ap)ds
ST TaBt) : 4.
Ao — A3 0 /t (Aa Y el i1 (48)

The first term tends to zero by (4.1). In the integj@kpffl()\a — )Ag)ds| is bounded by &%z and

(rap/(Aa — Ag)) € L by (4.2), hence (4.8) tends to 0 s~ oco.

Next we show that (3.2) is implied by (4.3)—(4.5). The discussion of (3.2) is divided again into four
cases as in (3.8)—(3.11).

Casel. (a, B) € (Dic2), (a,7) € (Dic2). In this case the integral in (3.2) is

00 00 t1 . t -~
LN ranttaela 0% d ey el
t

21

dtq

00 00 Y s . - )
- /t [—)\ Tiﬁ)\ﬁ (tl) _/t <)\7Tiﬁ)\ﬁ> eftz (Ra=Ag)d dt2:| ’I“ﬁy(tl) eftlo‘a Ay)d dty.
Q 1 «a
Here\expﬂil(Aa — \g)ds| < e K2 for t1 < ty, ]expfttl()\a ~A)ds| < e K2 for ¢ < t1, and thanks
to (4.1),
!/
T'alg o] ra,@
t)| < dts.
)\a—)\g(l) /tl ’()\a_)\,@) ‘ 2

So the last double integral is bounded by

0 - /
/ {/ ’ (7'0476) ‘ dtz] ’T’gy(tl)‘ dtl(l + e_KZ) e_Kz,
¢ t1 )‘oz - )\5

and assumption (4.3) guarantees that (3.2) tends to O.
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Casell. (o, B) € (Dic2), («,7) € (Dicl). In this case (3.2) is

t ) ey s ' Oa— s
/ {/ ras(t2) eftz (Aa—Ag)d dtz} () eftl(x Ay)d
to t1

Since (v, ) € (Dicl), it is sufficient according to the lemma to require that the integral (considered as a
function oft,) satisfies

00 t1 _
[ / rag(t2) els oA dtz} ran(ts) € L1,
t1

dtq.

By (4.8) this becomes

. / t
Tag 00 Tag ef (Aa—Ag)ds ] 1
— (¢ — ) et dto|rs,(t) € L*.
[Aa—Ag(H/t <AQ_A5) 2 2|rau(t) €

As in Case |, this is guaranteed by assumption (4.3).
Caselll. (o, B) € (Dicl), (o, ) € (Dic2). In this case (3.2) is, according to (4.6),

<[ rh (Ao —Ag)d " Aa—Ay)d
/ H / ras(t2) P 0) Sdtz] r6u(t1) eftl( e
t to

oo T eftl(xa—xﬁ)ds T
= to)et - t
[\&Mﬂéa : v

"t / t - t - d
() e g gl

to Aa — )‘ﬁ

dtq

dty.

Here, due to (4.1) and (4.2),

/
"'af FN( a8
t)| < dt
Aa—)\g(l)‘ /tl ‘(AQ—AB)‘ ?

and]expﬁl()\a —\,)ds| < e K2 fort < ¢1. Consequently the three assumptions (4.3)—(4.5) imply (3.2).
Case V. (o, B) € (Dicl), («,7) € (Dicl). Now the integral in (3.2) is

-t
J
Since ¢, v) € (Dicl), it is sufficient according to the lemma to require that the internal integral (consid-
ered as a function af) satisfies

t1 t1 o d
[ / rag(tz) ele o) Sdtz} ran(ts) € 1.

to

t

t Yo " a—Ay)d
{[rwmmk“Amwﬁwmniﬁ ] g
0
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According to (4.7) this is equivalent to

t (a—Ag)d t ) d
[const- e T " T% S0+ / (A WA ) el sdtl] ray(t) € LY
— B

which is implied by the conditions (4.3)-(4.5)0

Remarks.

(i) If rap/(Aa—Ag) is monotone then (4.1) implies (4.2) and (4.3) may be written, @83, (t) /(Ao —
)\5) € Ll.
(i) If Ao = Ag the theorem holds provided thatg = 0. In this case (4.4) and (4.5) are irrelevant.
(iif) Conditions (4.3), (4.4) and (4.5) are not too severe requirements since in each ofthaém
multiplied by a factor which tends to zero.
(iv) Conditions (4.1) and (4.2) stem from the requirement (3.1) of Theorem 1. Conditions (4.3)—(4.5)
guarantee that requirement (3.2) holds.

5. Some examples and comparisons

The following examples are designed to bring out the various manners that Theorem 3 could be ap-
plied. Consider Eq. (1.1) with

D = diag{c;t""}, R = (a;t%), a;=0,4,7=1,...,n. (5.1)

Here and throughout this sectiop a;; are complex valued constants andg;; are real valued, positive
or negative. Among the diagonal terms there may be both real valued and complex valued terms, i.e., the
differences ReX, — \g) may be either zero or nonzero. This is a generic case, since even eigenvalues of
real matrices are, in general, complex valued.

Let us check when do the assumptions (4.1)—(4.5) hold. (4.1) means

Taf _ aaﬁt%ﬁ
Ao — )\5 - CotPe — Cgtpﬁ

— O(t‘hxﬁ_max(paypﬁ) - 0.

This holds when

Gag < max(pcwpﬁ)' (52)
The relation (4.2) leads to the same condition (5.2). Condition (4.3) becomes
dap + gy — MaXpa,pp) < —1. (5.3)

(4.4) and (4.5) are assumed only whfetrRe()\a — Ag)ds — —oo. But

t t
[ Retw—A9)ds = [ Re{casm® — cyst) ds — —ox
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ast — oo may happen only if max(,,pg) > —1 (andc,, cg have suitable arguments). If max( pg) >
—1then

T/By(t) eft()\afkg)ds — aﬁytqﬁ" eft(caspa*cﬁgspﬁ)ds c Ll
holds obviously by the fast exponential decay. The formula (4.5) behaves similarly. This leaves us with

only two assumptions, (5.2) and (5.3). If max(pg) = —1 and Rek, — A\g) = es~twith ¢ < 0 (i.e.,
(o, B) € (Dicl)), then condition (4.4),

t
ray(tye) Ca=29)ds — congt . 954 € 1,
holds if we assumeg, < —1 for allv. For such ¢, 3) assumptions (5.2) and (5.3) are replaced by
dop < -1 and gp, < -1,

respectively.
Consider, for example, the system

itPr 0 0 0 c1oth2  cqgt?is
0 itz 0 | + | et 0 Cp3ti23

0 0 e cat® cgpt®® 0

Y = Y, to<t< oo, (5.4)

wherec;;, are complex constantg;, ¢;; are real valued.

Levinson’s methods cannot be applied to system (5.4). This is so on two counts. The first count is that
the off diagonal terms are not necessarily.th The second count being that two elements of the diagonal
matrix may coalesce as— oc. Therefore a continuously differentiable invertible transformation that
diagonalizes the system cannot be guaranteed. Because of same reasons the results in [6] cannot be
applied. The methods in [3,11,12] cannot conclude either that the system is almost diagonal. Neither
can [14,1] be applied to (5.4) as Re(— Ap) = 0.

Another example is

itP1 0 0 0 0 c13t913
0O itkr O + 0 0 cp3t23
0 0 ps c3t Bl got 932 0

with two eigenvalues of the diagonal matrix being identical. In this case the first inequality of (5.2),
q12 < max(p1, p2), may be omitted. Neither is this system amenable to the methods mentioned above.
The conditions (5.2) and (5.3) are best possible in the following sense. Consider for exampleZhe 2

system

Y = Y, to<t< oo, (5.5)

, tp tCI12
Y :<tq21 th>y, p>-1,1<1t< 0, (5.6)
(which, of course, could be investigated by other methods). The transformatioi(p + 1)s)%/®+1
takes it into

dy < 1 c108@12=P)/(P+1) ) v
21 ’

&5 = \epysleern)/@+1) > (5.7)
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which, according to (5.2) and (5.3), is asymptotically integrablg4f< p, g21 < p and

qi2—p  q21—p
p+1 p+1

< -1 (5.8)

(5.8) cannot be relaxed. For, let= (q12 — p + g21 — p)/(p + 1). If (5.7) is asymptotically integrable, it
has according to (1.4) a fundamental solution

V= o) (P o )

On the other hand, by Levinson’s theorem, it has a fundamental solution

Ve - (o) (FPRO® 0 Ve,

where\1(s) = 1+ O(s%), Xa(s) = 2 + O(s*) are the eigenvalues of the coefficient matrix of (5.7).
It is easily seen that the two representations are compatible only<if —1. This means that (5.8) is
necessary. Consequently conditions (5.3) cannot be relaxad=fpg.

Theorem 3 has obvious advantages as its conditions can be tested in a straight forward manner. It also
has drawbacks. For example, for the system

r_ tP t7(1 + cos(é))/2
Y= <tq(l + cos(é))/2 2tP ) Y, (5.9)

p < q, the large rate of growth of the derivative of the off diagonal elements precludes us from applying
Theorem 3. On the other hand (5.9) can be shown to satisfy the conditions of Theorem 1. The integral
in (3.1) reduces either to (3.4) or (3.5) with

+1 _ 4p+l
a4

t
< q —_ =
|[r12(t1)], [r2a(ta)] < t9, /t1 (A2 — A1) ds b1

and both (3.4) and (3.5) tend to 0 by (3.15) and (3.17), respectively. In (3.2) the internal integral is
bounded and the external integral is estimated again by (3.15) and (3.17).

Theorem 1 is in particular convenient for use in some other cases. It appears thaﬁfy\Fkne@a —
Ag)ds — —oo or Whenftt1 Re(\, — Ag) ds — +o0, then the estimation of the integrals (3.1) and (3.2)
can be done by the I'Hospital rule and no differentiabilityrgh /(Ao — Ag) is needed. In the first case
(o, B) € (Dicl), (3.1) becomes (3.4) and this integral is bounded by

' * Jh Iras(t)| expi [ ReQy — Ag) ds) dts
HBIS /to ras(ts) exp</tl Reba —Aa) ds) A= exp( [ Re(\q — Ag) ds) '

The denominator tends teoco. If |ry5(t)| exp(— f; Re(\, — Ag)ds) ¢ L* then by the I'Hospital rule
(*oo0/00”) this tends to lim—|r,z(t)|/Re(\» — Ag), provided that the last limit exists. Otherwise, if

Irap(t) expl [L Re(\, — \g)ds) € LY, we geti(t) = O(exp/’ Re(\, — \5) ds).
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If Re ft()\a — Ag)ds — +oo (this is the case whem(«) € (Dicl)), then the integral (3.1) is bounded
by

10)] < /t " ras(ty)] exp( /tlt Re(\ — As) ds) dt

J2 Irap(ty) exp f;* ReQq — Ag) ds) dty
exp(— [, Re(\q — Ag) ds) '

Now the denominator tends to O by (Dicl). If

't
Tap(t1) exp<— /t Re(\, — \p) ds> et
1

then by the I'Hospital rule (“P0”") this tends to limr.s(t1)|/Re(s — Ag). Otherwise, if

ras(t1) exp(— /tlt Re(\n — Ag) ds) ¢ Lt

our quantity is undefined.
On the other hand, if for a pain(5) |flf1 Re(\, — A\g)ds| is bounded for alks, ¢, then the above

estimates are not helpful. Here the generic assumptigne L! is natural and it implies thak(t) =
O(/f;* |rap| ds). As an alternative, extra differentiability is needed for the integration by parts utilized in
Theorem 3 to take place.
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