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Abstract. The paper studies singular eigenvalue problems for the equation yðnÞ þ �pðxÞy ¼ 0 with
boundary conditions imposed on the derivatives yðiÞ at the points x ¼ a and x ¼ 1. We look for singular
problems which are analogous to regular problems on a finite interval. It is characterized when each
eigenfunction has a finite number of zeros and when the spectrum is discrete or continuous, respectively.
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1. Introduction

Eigenvalue problems for the differential equation

yðnÞ þ �pðxÞy ¼ 0 ð1:1Þ
where pðxÞ is a continuous, one-signed function on ½a; b� and various boundary
value conditions, like

yðiÞðaÞ ¼ 0; i ¼ 0; . . . ; k � 1;

yðiÞðbÞ ¼ 0; i ¼ 0; . . . ; n� k � 1; ð1:2Þ
or

yðiÞðaÞ ¼ 0; i ¼ 0; . . . ; k � 1;

yðiÞðbÞ ¼ 0; i ¼ k; . . . ; n� 1; ð1:3Þ
are well known ([10], [7], [4]). A typical result is that there exists an infinite
sequence or eigenvalues �i,

0< ð�1Þn�k�1�1 sgn½ p�< ð�1Þn�k�1�2 sgn½ p�< � � � ;
j�ij ! 1 as i!1;

and the i-th eigenfunction has precisely i� 1 simple zeros in (a, b).
Naito [11] investigated equation (1.1) with even n, �> 0, pðxÞ> 0 on ½a;1Þ and

the singular boundary conditions yðaÞ ¼ 0, yðiÞð1Þ ¼ 0, i ¼ 1; . . . ; n� 1, and



proved the existence of eigenvalues and eigenfunctions with similar properties. In
this work we assume that pðxÞ is one signed on ½a;1Þ, n is an arbitrary integer and
ask for which other singular eigenvalue problems on the infinite domain ½a;1Þ the
spectrum f�ig and the zeros of the eigenfunctions behave as described above.

Several questions arise:

(1) Is there a natural singular boundary value problem which is similar to the
regular problems (1.1), (1.2) or (1.1), (1.3)?

(2) Which assumptions ensure eigenfunctions with finite number of zeros in
ða;1Þ?

(3) Which assumptions ensure a discrete spectrum?
(4) Are these conditions also necessary?

The answers are not obvious and the generalization from regular boundary
conditions (1.2) or (1.3) to singular boundary conditions by sending the endpoint
b to þ1 is not straightforward. Even for second order equations, this may lead to
limit circle=limit point problems. Various boundary conditions of mathematical
physics (like ‘‘the solution is bounded at a singular point’’ or ‘‘the solution is at
most of polynomial growth’’) lead to either discrete or continuous spectra.

A central point in this work is to understand the difference between regular and
singular boundary value problems. The second point is to show that one and the
same set of singular boundary conditions may lead to essentially different phe-
nomena for various coefficients pðxÞ. Our results are formulated and summarized
in Theorems 1, 2 and 3 later in this section. The theorems are highlighted by
several examples in the last section. A few technical details which are common
to singular and regular boundary value problems are borrowed from [2] (or [4]).

We begin with a careful analysis of questions (2), (3) and (4) which will lead us
to the formulation of suitable boundary value problems. Our starting point is the
requirement that the sequence of eigenvalues of the wanted problem is unbounded
and that each eigenfunction has a finite number of zeros in ða;1Þ. Since
yðnÞ ¼ ��pðxÞy, it follows that not only y but also each of its derivatives has a
finite number of zeros. So there exists some x0 ¼ x0ð�Þ> a, such that yðiÞðxÞ 6¼ 0 on
½x0;1Þ for all i ¼ 0; . . . ; n. Consequently, by the lemma of Kiguradze, there exists
a certain integer q such that y (or �y) satisfies

yðiÞ> 0; i ¼ 0; . . . ; q;

ð�1Þi�qyðiÞ> 0; i ¼ q; . . . ; n; x0 4 x<1: ð1:4Þ
Since we expect that our boundary conditions will include vanishing of some
derivatives at both endpoints a and 1, the cases q ¼ 0 and q ¼ n, i.e.,

ð�1ÞðiÞyðiÞ> 0; i ¼ 0; . . . ; n; ð1:5Þ
and

yðiÞ> 0; i ¼ 0; . . . ; n; ð1:6Þ
respectively, must be excluded. Indeed, if (1.5) holds at some point x ¼ x1 this
prevents the vanishing of any derivative for x< x1, while a solution which satisfies
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(1.6) at x ¼ x1 can have no derivative which vanishes in ðx1;1�. Thus, we assume
from now and on that 14 q4 n� 1. Moreover, by yðnÞ ¼ ��py and (1.4) it
follows that the integer q must satisfy

sgn½��p� ¼ ð�1Þn�q: ð1:7Þ
Inequalities (1.4) are equivalent to the (q, n� qÞ-disfocality of equation (1.1)

on ½x0;1Þ, namely, that for every �, �, x0 4�<�, the boundary conditions

yðiÞð�Þ ¼ 0; i ¼ 0; . . . ; q� 1;

yðiÞð�Þ ¼ 0; i ¼ q; . . . ; n� 1; ð1:8Þ
have no solution y 6� 0. Next recall the following result about disfocality
[2, Theorem 7.11]:

If equation (1.1) is (q, n� q)-disfocal on an interval and 14 k4 q,
k� q (mod 2), then the equation

yðnÞ þ �

��
n� 1

q

���
n� 1

k

��
pðxÞy ¼ 0 ð1:9Þ

is (k, n� k)-disfocal on the same interval. If n� 15 k5 q, k� q (mod 2), then
the equation

yðnÞ þ �

��
n� 1

q� 1

���
n� 1

k � 1

��
pðxÞy ¼ 0 ð1:10Þ

is (k, n� k)-disfocal there.

According to our assumptions, equations (1.1) is ðq; n� qÞ-disfocal for some
integer q and for arbitrary large values of � on some ½x0ð�Þ;1Þ. It follows from the
last remark that (1.1) is also ðk; n� kÞ-disfocal on some other infinite ray
½x0ð�0Þ;1Þ, where the suitable �0 is determined by (1.9) or by (1.10). Conse-
quently, equation (1.1) must be eventually ðk; n� kÞ-disfocal for every value of
� and every k such that sgn½��p� ¼ ð�1Þn�k. In other words, equation (1.1) must
be eventually disconjugate for every value of �.

This last property is completely characterized [3]:

Proposition 1. Equation (1.1) is eventually disconjugate for every value of � if
and only if

lim
x!1

�
xn���1

ð1
x

s�jpðsÞjds
�
¼ 0 ð1:11Þ�

for some �4 n� 1.
If (1.11)� holds for some �, then (1.11)� holds for every �, �< n� 1. However,

the implication ð1:11Þ� ! ð1:11Þ� is in general false for �< n� 1, � ¼ n� 1.

It is clear that � ¼ n� 1 plays a special role in (1.11)�. Indeed, for � ¼ n� 1,
(1.11)� reduces into the integrability conditionð1

sn�1jpðsÞjds<1; ð1:12Þ
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which is a well known necessary and sufficient condition for every solution of
equation (1.1) to be asymptotic to some polynomial of order smaller than n [1]. It
will turn out that the difference between (1.11)� with �< n� 1 and (1.12) plays a
critical role in our eigenvalue problems.

Inequalities (1.4) and their close relation with the boundary conditions (1.8)
suggest to consider singular boundary conditions of the form

yðiÞðaÞ ¼ 0; i ¼ 0; . . . ; k � 1;

lim
x!1

yðiÞðxÞ ¼ 0; i ¼ k; . . . ; n� 1; ð1:13Þ

for some fixed integer k, 14 k4 n� 1, sgn½��p� ¼ ð�1Þn�k. Henceforth, we
study the eigenvalue problem (1.1), (1.13).

Up to here the analysis relied only on the assumption that each eigenfunction
of the problem that we look for has only a finite number of zeros. The next stage
deals with the question when do the eigenvalues form a discrete set.

Proposition 2. Let equation (1.1) be eventually disconjugate for every value of
�. A necessary condition for the problem (1.1), (1.13) to have a discrete set of
eigenvalues is (1.12). If (1.12) does not hold (but (1.11)� holds for some
�< n� 1), then (1.1), (1.13) has a nontrivial solution for every � 6¼ 0.

In fact we prove a result about the behaviour of the solutions of (1.1) near
1, which is a key ingredient of this work and implies Proposition 2
straightforwardly:

Proposition 29. If (1.12) holds then the n� k singular boundary conditions

lim
x!1

yðiÞðxÞ ¼ 0; i ¼ k; . . . ; n� 1; ð1:14Þ

are satisfied by precisely k linearly independent solutions of (1.1). If (1.12) does
not hold but (1.11)� holds for some �< n� 1 and � 6¼ 0, then (1.14) is satisfied by
k þ 1 independent solutions of (1.1).

This implies Proposition 2 immediately. Indeed, if (1.12) does not hold and
� 6¼ 0, then some combination of the mentioned k þ 1 solutions satisfies the k bound-
ary conditions of (1.13) at x ¼ a, hence boundary conditions (1.13) have a nontrivial
solution. Consequently (1.12) is necessary for a discrete spectrum of (1.1), (1.13).

Proposition 20 will be proved at the end of the section. Now we can formulate
the main results of this work which describe the behavior of eigenvalue problem
(1.1), (1.13) under assumptions (1.12) and (1.11)�, respectively. We have already
concluded:

Theorem 1. (a) A necesssary and sufficient condition for equation (1.1) to have
a solution with a finite number of zeros for arbitrary large values of � (other than
(1.5), (1.6)) is that (1.11)� holds for some �, �4 n� 1.

(b) A necessary condition for the eigenvalue problem (1.1), (1.13) to have a
discrete sequence of eigenvalues is (1.12).
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Our main results are the following:

Theorem 2 (Discrete Spectrum Case). When (1.12) holds, then the eigenvalue
problem (1.1), (1.13) has a sequence of eigenvalues f�ig which satisfies

0< ð�1Þn�k�1�1 sgn½ p�< ð�1Þn�k�1�2 sgn½ p�< � � � ;
j�ij ! 1 as i!1:

To each eigenvalue �i there corresponds an essentially unique eigenfunction, and
it has precisely i� 1 simple zeros in ð�;1Þ.

Theorem 3 (Continuous Spectrum Case). Suppose that (1.11)� holds for some
�< n� 1 but (1.12) fails to hold. Then for every � 6¼ 0, such that
sgn½��p� ¼ ð�1Þn�k, there exists an essentially unique eigenfunction yðx; �Þ of
the eigenvalue problem (1.1), (1.13).

Moreover, there exists a sequence a numbers �i, sgn½��ip� ¼ ð�1Þn�k, such
that for j�i�1j< j�j4 j�ij, yðx; �Þ has exactly i� 1 simple zeros in ða;1Þ.

In the discrete case (1.1), (1.13) describe a proper eigenvalue problem similar
to the regular problem (1.1), (1.3). In the continuous case (1.1), (1.13) is not a
typical eigenvalue problem in spite of its external shape. Its distinctive feature is
the stepwise growth of the number of zeros in spite of the continuous spectra.
Theorems 2 and 3 are proved in Sections 2 and 3, respectively. The difference and
similarity between the two cases will be discussed in Section 4. Examples 1, 2 and
3 of Section 5 demonstrate the Discrete Spectrum Case while Example 4 shows the
Continuous Spectrum Case.

We close the section by the proof of Proposition 20.

Proof of Proposition 20. This proposition brings forward the essential differ-
ence between the n� k regular boundary conditions yðiÞðbÞ ¼ 0, i ¼ k; . . . ; n� 1,
of (1.3) and the analogous n� k singular boundary conditions (1.14). While the
n� k regular conditions are obviously satisfied by exactly k solutions, we show
that the number of solutions which satisfy the n� k singular boundary conditions
(1.14) depends on the behaviour of pðxÞ. For this we quote a detailed description of
the behaviour of all solutions of (1.1) near þ1:

Proposition 3. There exists a basis of solutions fu0; . . . ; un�1g of equation
(1.1) such that if the equation is eventually ðq; n� qÞ-disfocal for some
14 q4 n� 1, sgn½��p� ¼ ð�1Þn�q, then the two solutions uq�1, uq and all their
linear combinations satisfy inequalities (1.4). Moreover, their Wronskian
Wðuq�1; uqÞ is positive on (a;1). The elements of this basis depend analytically
on �:

If ð�1Þn�p> 0 then the solution u0 (which corresponds to q ¼ 0) satisfies
(1.5). If �p< 0 then, for q ¼ n, the solution un�1 satisfies (1.6).

The proof of Proposition 3 is given for an arbitrary equation of type (1.1) in
[2, Chapter 8]. For nonoscillatory equations see [9]. Each ui is analytic in � since it
is obtained as a limit of solutions which are analytic in � and converge uniformly
on compact intervals.
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Now we return to the proof of Proposition 20. If a solution y satisfies inequalities
(1.4) (for example, uq�1 and uq do this), then y; y0; . . . ; yðq�1Þ are positive and increas-
ing, yðqÞ;�yðqþ1Þ; . . . ; ð�1Þn�q�1

yðn�1Þ are all positive and decreasing. Therefore

y; y0; . . . ; yðq�2Þ % 1;

jyðqþ1Þj; jyðqþ2Þj; . . . ; jyðn�1Þj & 0 as x!1: ð1:15Þ
However, for the increasing yðq�1Þ and the decreasing yðqÞ, both possibilities

yðq�1Þ % C> 0 or yðq�1Þ % þ1; ð1:16Þ

yðqÞ & 0 or yðqÞ & c> 0; ð1:17Þ
can occur. In every case the bounds

0<Axq�1 4 yðxÞ4Bxq; x0 4 x<1;

hold for some suitable 0<A<B.
Any solution which satisfies (1.15) withq ¼ k � 2; k � 4; . . . ; automatically satis-

fies the singular boundary conditions (1.14), while (1.15) with q ¼ k þ 2; k þ 4; . . . ;
makes (1.14) impossible. Hence u0; . . . ; uk�2 and their nontrivial combinations always
satisfy the boundary conditions (1.14) while ukþ1; . . . ; un�1 never satisfy (1.14).

This leaves us with uk�1; uk, which obey inequalities (1.4) with q ¼ k: Do they
satisfy boundary conditions (1.14)? While we know that both uk�1, uk satisfy

y; y0; . . . ; yðk�2Þ ! 1; yðkþ1Þ; yðkþ2Þ; . . . ; yðn�1Þ ! 0;

the behaviour of the ðk � 1Þth and kth derivatives of uk�1, uk at þ1 is not
determined yet due to (1.16), (1.17) with q ¼ k:

Let us apply the details of Proposition 3 for the two solutions uk�1; uk. Since
Wðuk�1; ukÞ> 0, uk�1=uk is monotone and tends to some limit L, finite or infinite.
By interchanging their role or replacing uk�1 by uk�1 � Luk, we may assume
without loss of generality that uk�1=uk ! 0, i.e., uk�1 is the ‘‘small’’ solution
which satisfies (1.4) and uk is a ‘‘large’’ one. It follows that also u

ðiÞ
k�1=u

ðiÞ
k ! 0

for i ¼ 0; . . . ; n� 1, in particular u
ðkÞ
k�1=u

ðkÞ
k ! 0. This shows what happens in

(1.17) with q ¼ k: At least the ‘‘small’’ uk�1 must always satisfy u
ðkÞ
k�1 ! 0: It

remains to decide the behaviour of the ‘‘large’’ uk, whether

u
ðkÞ
k & 0 or u

ðkÞ
k & c> 0:

These two possibilities are easily distinguished. As mentioned before, a solution
(and every solution) of (1.1) is asymptotic to a polynomial, or more precisely

u
ðiÞ
j �

xj�i�1

ðj� i� 1Þ! ; i ¼ 0; . . . ; j� 1;

u
ðiÞ
j � oðxj�i�1Þ; i ¼ j; . . . ; n� 1;

if and only if (1.12) holds or if � ¼ 0: (Note that the case � ¼ 0 is the same as
pðxÞ� 0, hence it always belongs to assumption (1.12)). The sufficiency follows
from well known results about perturbations of arbitrary linear equations. For its
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history see [1, p. 54]. The necessity of (1.12) is discussed in [8, p. 136]. For our
problem this means that u

ðkÞ
k ! c> 0 if and only if (1.12) holds, otherwise

u
ðkÞ
k ! 0: Thus, uk�1, uk behave as following: If (1.12) holds then uk�1 satisfies

u
ðiÞ
k�1 !1; i ¼ 0; . . . ; k � 2;

u
ðk�1Þ
k�1 ! C> 0;

u
ðiÞ
k�1 ! 0; i ¼ k; . . . ; n� 1; ð1:18Þ

and uk satisfies

u
ðiÞ
k !1; i ¼ 0; . . . ; k � 1;

u
ðkÞ
k ! c> 0;

u
ðiÞ
k ! 0; i ¼ k þ 1; . . . ; n� 1; ð1:19Þ

while if (1.12) does not hold (but (1.11)� holds) and � 6¼ 0, both uk�1, uk satisfy

uðiÞ ! 1; i ¼ 0; . . . ; k � 1;

uðiÞ ! 0; i ¼ k; . . . ; n� 1: ð1:20Þ
We summarize our analysis of the singular boundary conditions (1.14):

If (1.12) holds then precisely the k solutions u0; . . . ; uk�1 satisfy the singular
boundary conditions (1.14). If (1.12) fails to hold but (1.11)� holds and � 6¼ 0,
then the k þ 1 solutions u0; . . . ; uk�1, uk satisfy the singular boundary conditions
(1.14).

This completes the proof of Proposition 20. &

2. The Discrete Spectrum Case

The proof of Theorem 2 is divided into a long sequence of steps, each one
proving another detail. The equivalence of eventual disconjugacy for all � and
(1.11)� had been already proved and summarized in Proposition 1. The necessity
of the integrability condition (1.12) for discrete eigenvalues was proved in Propo-
sition 2. Its sufficiency will be treated here.

(i) A basis of solutions. When the integrability condition (1.12) holds we need a
description of a basis of solutions which is more detailed than that of Proposition 3:

Suppose that (1.12) holds and an interval [�1;�2] is given. There exists a point
x0 ¼ x0ð�1;�2Þ and a basis of solutions fu0ðx; �Þ; . . . ; un�1ðx; �Þg such that each
u‘ðx; �Þ, ‘ ¼ 0; . . . ; n� 1, is continuous for ðx; �Þ2 ½x0;1Þ� ½�1;�2�, it satisfies

1

2
4

u‘ðx; �Þ
x‘=‘!

4 2 on ½x0;1Þ� ½�1;�2� ð2:1Þ

and

lim
x!1

u‘ðx; �Þ
x‘=‘!

¼ 1; ð2:2Þ
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and the convergence in (2.2) is uniform in �2 ½�1;�2�. Moreover, u‘ðx; �Þ=x‘ is
uniformly continuous on ½a;1Þ� ½�1;�2�, a> 0.

This is shown by a standard fixed point argument and we only emphasize the
uniform estimates (2.1), (2.2) which are critical for the next steps of the proof. In
the following discussion let ‘ be a fixed integer, 04 ‘4 n� 1. u‘ðx; �Þ will be
characterized as the unique solution of the integral equation

uðxÞ ¼ x‘

‘!
þ ð�1Þn�‘�

ðx
x0

ðx� �Þ‘�1

ð‘� 1Þ!

�ð1
�

ðs� �Þn�‘�1

ðn� ‘� 1Þ! pðsÞuðsÞ ds
�
d�: ð2:3Þ

Let the right hand side of (2.3) be denoted by T ½u� and choose x0 sufficiently large
so that

maxðj�1j; j�2jÞ
ð1
x0

sn�1jpðsÞj ds< 1=10:

Let B be the space of continuous functions on ½x0;1Þ with the norm

kuk ¼ sup
½x0;1Þ

���� uðxÞx‘=‘!

����
and K � B the convex cone

K ¼
�
u

���� 1

2
4

uðxÞ
x‘=‘!

4 2 on ½x0;1Þ
�
:

For u2K we have uðxÞ4 ð2=‘!Þx‘, so�����
ð1
�

ðs� �Þn�‘�1

ðn� ‘� 1Þ! pðsÞuðsÞ ds
����4 maxðj�1j; j�2jÞ

2

‘!

ð1
�

sn�1jpðsÞj ds< 1=5

for � 5 x0. Hence it is easily seen that T ½u� 2K. Moreover, T is a contraction of K
since

kT ½u� � T ½v�k ¼ sup
x 2 ½x0;1Þ

����maxðj�1j; j�2jÞ
x‘=‘!ðx

x0

ðx� �Þ‘�1

ð‘� 1Þ!

�ð1
�

ðs� �Þn�‘�1

ðn� ‘� 1Þ! pðsÞs
‘ uðsÞ � vðsÞ

s‘
ds

�
d�

����
4 ku� vk sup

x 2 ½x0;1Þ

���� 1

x‘=‘!

ðx
x0

ðx� �Þ‘�1

ð‘� 1Þ!
1

5
d�

����
4

1

5
ku� vk;

so that T has a unique fixed point in K which is a solution of the integral equation
(2.3). It is straightforward to see that the solution of the integral equation (2.3) is a
solution of the differential equation (1.1) such that

uð‘ÞðxÞ ¼ 1þ ð�1Þn�‘�
ð1
x

ðs� xÞn�‘�1

ðn� ‘� 1Þ! pðsÞuðsÞ ds! 1
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and uðiÞ ! 0, i ¼ ‘þ 1; . . . ; n� 1 as x!1. This is the required solution u‘ðx; �Þ.
Once u‘ðx; �Þ is defined on ½x0;1Þ, we extend it to ½a; x0�. The same argument is
repeated for each ‘ ¼ 0; . . . ; n� 1:

According to the well known proof of the fixed point theorem for contractive
operators, the iteration z0ðxÞ ¼ x‘, zi ¼ T ½zi�1�, i ¼ 1; . . . converges to the unique
fixed point u‘ so that kzi � u‘k4 ð1=5Þkzi�1 � u‘k, i.e.,

sup
x 2 ½x0;1Þ

���� ziðxÞ � u‘ðx; �Þ
x‘=‘!

����4 1

5
sup

x 2 ½x0;1Þ

���� zi�1ðxÞ � u‘ðx; �Þ
x‘=‘!

����:
This means that the sequence ziðxÞ=x‘, i ¼ 1; 2; . . . ; converges uniformly on
½x0;1Þ to u‘ðx; �Þ=x‘. Since each iteration depends analytically on �, so does
the limit function.

(2.1) and (2.2) follow from the above estimates. The uniform convergence
of (2.2) is shown similarly. First take x1 5 x0 such that maxðj�1j; j�2jÞÐ1
x1

sn�1jpðsÞj ds<" and fix x1. Then by the above estimates,

���� u‘ðx; �Þx‘=‘!
� 1

����<"

for all x2 ½x1;1Þ, �2 ½�1;�2� and the uniform convergence of (2.2) follows.
By the above discussion we get that u‘ðx; �Þ=x‘ is uniformly continuous on

some ½x1;1Þ� ½�1;�2�: Next consider the quantities u
ðiÞ
‘ ðx1; �Þ, i ¼ 0; . . . ; n� 1,

as initial values at the fixed point x1. Since they depend continuously on �, it
follows by standard properties of initial value problems that u‘ðx; �Þ is uniformly
continuous also on ½a; x1� � ½�1;�2�. Thus u‘ðx; �Þ=x‘ is uniformly continuous on
the whole ½a;1Þ� ½�1;�2�, a> 0.

(ii) The solution yðx; �Þ: Consider a set of n� 1 singular boundary conditions

yðiÞðaÞ ¼ 0; i ¼ 0; . . . ; k � 2;

lim
x!1

yðiÞðxÞ ¼ 0; i ¼ k; . . . ; n� 1; ð2:4Þ

which is generated from (1.13) by the omission of one boundary condition at
x ¼ a, namely yðk�1ÞðaÞ ¼ 0. For every � there exists a solution yðx; �Þ of (1.1),
(2.4). Indeed, it was already seen that the n� k boundary conditions at x ¼ 1 are
satisfied by each of the k solutions u0; . . . ; uk�1 and there exists some linear
combination of them which satisfies also the k � 1 boundary conditions of (2.4)
at x ¼ a.

The purpose of yðx; �Þ is to characterize the eigenvalues as those values of �
for which the omitted n-th boundary condition yðk�1ÞðaÞ ¼ 0 is satisfied. The main
steps of the proof are as following: first we show that yðx; �Þ is essentially unique
and it depends analytically on �. Next it is shown that yðx; �Þ may have only
simple zeros in ða;1Þ and that their numbers increase indefinitely as � grows.
Finally it is proved that the suitable sequence of eigenvalues f�ig indeed exists and
the number of zeros of the corresponding yðx; �iÞ is determined.
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(iii) The uniqueness of yðx; �Þ and its dependence on �: To investigate yðx; �Þ,
we adopt a technique which is widely used in [2]. For each solution y we wish
to count the number of sign changes among the terms of the sequence yðxÞ,
y0ðxÞ; . . . ; yðnÞðxÞ. As some of these terms may vanish at certain isolated values
of x, we rather do this on a small right hand side neighbourhood of x, and define VðxÞ
as the number of sign changes in the sequence

yðxþ "Þ; y0ðxþ "Þ; . . . ; yðnÞðxþ "Þ;

as "& 0: The function VðxÞ is well defined on the domain of definition of the
solution y, it is integer valued, and since the first and last terms in the sequence are
related by yðnÞ ¼ ��py, VðxÞ is even or odd according if ��p is positive or
negative. That is,

ð�1ÞVðxÞ ¼ sgn½��p�: ð2:5Þ

The main property of the sign changes is that for each solution y of (1.1), the
corresponding function VðxÞ is a nonincreasing step function of x.

This property results from a simple variation on the Budan-Fourier theorem
[5, p. 83]. We only outline the idea of the proof as we follow closely [5]. Let y be a
solution of (1.1). The corresponding function VðxÞ is clearly constant on any
interval where yðiÞðxÞ 6¼ 0, i ¼ 0; . . . ; n. What happens as x crosses a point x0 such
that x0 is a zero of yðqÞ of multiplicity m and yðq�1Þðx0Þ 6¼ 0, q5 1, 0<m< n� q?
The first and the last terms of the sequence

yðq�1ÞðxÞ; yðqÞðxÞ; . . . ; yðqþmÞðxÞ;

do not change their signs as x grows from x0 � " to x0 þ ", so the parity of VðxÞ
remains fixed. The signs of the terms yðqÞðxÞ, yðqþ1ÞðxÞ; . . . ; yðqþmÞðxÞ alternate at
x ¼ x0 � " and all these terms have the same sign at x ¼ x0 þ "> 0, so VðxÞ
decreases by m as x grows from x ¼ x0 � " to x ¼ x0 þ ". Between the terms
yðq�1ÞðxÞ, yðqÞðxÞ there is either a loss or a gain of change of sign as x grows,
depending on the sign of yðq�1Þðx0ÞyðqþmÞðx0Þ 6¼ 0. Hence VðxÞ decreases by m or
by m� 1 (or is possibly unchanged if m ¼ 1). In any case the decrease is by an
even number.

If x0 is a zero of y then also yðnÞðx0Þ ¼ 0 and we have to discuss the case when

yðqÞðx0Þ ¼ � � � ¼ yðnÞðx0Þ ¼ yðx0Þ ¼ � � � ¼ yðr�1Þðx0Þ ¼ 0;

yðq�1Þðx0Þ 6¼ 0; yðrÞðx0Þ 6¼ 0; r4 q;

in a cyclic order. This is discussed similarly. Hence VðxÞ is a nonincreasing step
function of x.

The role of VðxÞ is clarified if we calculate it for an eigenfunction y of (1.1),
(1.13) (if such y exists). By the boundary conditions at x ¼ a, it is clear that y,
y0; . . . ; yðkÞ all have the same sign on a small right neighborhood of a, so
VðaÞ4 n� k. On the other hand, by the boundary conditions at x ¼ 1 and since
the yðiÞ-s have no zeros near1, it is clear that yðiÞyðiþ1Þ< 0, i ¼ k; . . . ; n� 1, near
x ¼ 1. So VðxÞ5 n� k for large values of x. Since VðxÞ in nonincreasing,
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VðxÞ� n� k on ða;1Þ. This enforces that

sgn½��p� ¼ ð�1Þn�k ð2:6Þ
which is compatible with our choice in (1.13) and the sign of the eigenvalues �, if
they exist, is determined by the boundary conditions (1.13).

Now we calculate VðxÞ for the solution yðx; �Þ which is defined by (2.4). By
the k � 1 boundary conditions of (2.4) at x ¼ a, it is clear that VðaÞ4 n� k þ 1
and by the n� k boundary conditions at x ¼ 1, it follows that VðxÞ5 n� k for
large values of x. Since VðxÞ is nonincreasing, n� k4VðxÞ4VðaÞ4 n� k þ 1.
In addition, the parity of VðxÞ is determined by (2.5) and (2.6), so it follows that

VðxÞ� n� k on ½a;1Þ for y ¼ yðx; �Þ: ð2:7Þ
Since y ¼ yðx; �Þ ¼

Pk�1
i¼0 ciuiðx; �Þ, it is asymptotic to some polynomial of

order h, h4 k � 1. Therefore yðiÞðx; �Þ ! 0, i ¼ hþ 1; . . . ; n� 1 as x!1 and
since these derivatives are eventually non vanishing, we have yðiÞðx; �Þ
yðiþ1Þðx; �Þ< 0 for i ¼ hþ 1; . . . ; n� 1. Consequently VðxÞ5 n� ðhþ 1Þ: On
the other hand VðxÞ� n� k, so h5 k � 1. Thus h ¼ k � 1 and

yðx; �Þ � const xk�1: ð2:8Þ
Consequently yðx; �Þ may be normalized by

yðk�1Þð1Þ ¼ 1: ð2:9Þ
The recent considerations imply that the solution yðx; �Þ is essentially unique. For
if there would be two such linearly independent solutions, some linear combina-
tion of them would violate (2.8) but would still satisfy boundary conditions (2.4), a
contradiction.

Once it is known that yðx; �Þ ¼
Pk�1

i¼0 ciui is essentially unique, it may be
represented as a determinant

yðx; �Þ ¼

u0ðx; �Þ � � � uk�1ðx; �Þ
u0ða; �Þ � � � uk�1ða; �Þ

..

.

u
ðk�2Þ
0 ða; �Þ � � � u

ðk�2Þ
k�1 ða; �Þ

���������

���������
: ð2:10Þ

This verifies the analytic dependence of yðx; �Þ on �. In fact, yðx; �Þ is real ana-
lytic, since our analysis holds only for � restricted by (2.6). We also see by (2.8)
that the cofactor of uk�1ðx; �Þ in the determinant (2.10) must be nonzero, and after
the normalization (2.9) it is identically 1.

(iv) The zeros of yðx; �Þ are simple. Suppose that yðx; �Þ (or one of its deriv-
atives) has at a point x0 of ða;1Þ a zero of multiplicity m5 2. According to the
previous section VðxÞ decreases at x0 by an even integer which is at least m� 1, i.e.,
at least by 2. But this is impossible since VðxÞ� n� k for y ¼ yðx; �Þ, so yðx; �Þ and
its derivatives cannot have any multiple zero in ða;1Þ.

(v) The zeros of yðx; �Þ are uniformly bounded for �2 ½�1;�2�: Recall that
yðx; �Þ ¼

Pk�1
i¼0 cið�Þuiðx; �Þ. By the normalization (2.9) of yðx; �Þ and the property
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(2.2) of the basis, we have ck�1ð�Þ� 1. Moreover, according to the representation
(2.10), cið�Þ are continuous and so jcið�Þj4M, i ¼ 0; . . . ; k � 2, �2 ½�1;�2�. It
was proved in (i) that each u‘ðx; �Þ=x‘, ‘ ¼ 1; 2; . . . , is uniformly continuous on
½a;1Þ� ½�1; �2�, a> 0. Consequently, also

yðx; �Þ=xk�1 ¼
Xk�1

i¼0

cið�Þ
uiðx; �Þ

xi
x�ðk�1�iÞ

is uniformly continuous on ½a;1Þ� ½�1;�2�.
Now we wish to show that the zeros of yðx; �Þ are uniformly bounded for every

�2 ½�1;�2�. Let x2 ¼ maxðx0; 4Mk!Þ. Then, using (2.1), we have on ½x2;1Þ

jyðx; �Þ � uk�1ðx; �Þj ¼
����
Xk�2

i¼0

cið�Þuiðx; �Þ
����

4 xk�1
Xk�2

i¼0

jcið�Þj
���� uiðx; �Þxi

����x�ðk�1�iÞ

4 xk�1
Xk�2

i¼0

Mð2=i!Þx�1
2 < kð2M=x2Þxk�1 4

xk�1

2ðk � 1Þ! :

Consequently, by the left hand side of (2.1),

yðx; �Þ> uk�1ðx; �Þ �
xk�1

2ðk � 1Þ! > 0

on ½x2;1Þ for all �2 ½�1;�2� and all the zeros of yðx; �Þ, if any, are in ½a; x2Þ:
(vi) The zeros of yðx; �Þ for small � and for large �: In (v) we verified

that yðx; �Þ=xk�1 is uniformly continuous on ½a;1Þ� ½0;��: But yðx; 0Þ ¼
ðx� aÞk�1=ðk � 1Þ! 6¼ 0 on ða;1Þ and has precisely k � 1 zeros at x ¼ a, so
yðx; �Þ may have no zero in ða;1Þ for sufficiently small values of �.

For sufficiently large values of �, we apply the following result [2, Lemma 10.2]:

Given a family of solutions yðx; �Þ such that none of them satisfies (1.5)
(if �pðxÞ< 0) or (1.6) (if ð�1Þn�pðxÞ< 0), then on any given interval yðx; �Þ
has a zero provided that j�j is sufficiently large.

Our family yðx; �Þ is of this type since VðxÞ� n� k 6¼ 0, n for yðx; �Þ. Conse-
quently yðx; �Þ has arbitrary many zeros in ða;1Þ for sufficiently large values of �.

(vii) The existence of eigenvalues. We follow a method used in [11]. For each
i ¼ 1; 2; . . . let

Li ¼ f�jð�1Þn�k�p< 0; yðx; �Þ has at least i simple zeros in ða;1Þg:
Li is nonempty, since according to (vi), yðx; �Þ has arbitrarily many zeros for
sufficiently large values of �. Li is an open set since the number of the simple
zeros of yðx; �Þ in ða;1Þ is preserved under a small change of �. For sake of
simplicity let us assume that the relevant values of � in Li are positive and put
�i ¼ inf Li. (In the opposite case, when �< 0, take �i ¼ supLi). Our aim is to
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show that �i is an eigenvalue of (1.1), (1.13), yðx; �iÞ is the corresponding eigen-
function and it has precisely i� 1 zeros in ða;1Þ.

By the discussion above, 0<�i <1 and, due to Li � Liþ1, we have �i 4�iþ1.
From now on let i be fixed. Choose a sequence �iðjÞ2Li, j ¼ 1; 2; . . . ; which
converges to �i ¼ inf Li as j!1. By the definition of Li each of the solutions
yðx; �iðjÞÞ has at least i zeros in ða;1Þ, all of them simple, say
a< z1ðjÞ< � � � < ziðjÞ. Since �iðjÞ2 ½0; �i þ 1� for all j, it follows by (v) that all
the zeros z1ðjÞ; . . . ; ziðjÞ, j ¼ 1; 2; . . . are bounded in a fixed interval ½a; x2�, where
x2 is independent of j (but is determined, of course, by �i).

Let us extract convergent subsequences of the sequences fz1ðjÞg; . . . ; fziðjÞg
which will be denoted, without loss of generality, by the same notation. Then
z1ðjÞ ! z1; . . . ; ziðjÞ ! zi as j!1. Of course a4 z1 4 � � � 4 zi4 x2. Since
yðx; �iðjÞÞ ! yðx; �iÞ as j!1 as well as their derivatives, it follows that
z1; . . . ; zi are i zeros of yðx; �iÞ, multiplicities counted. But by (iv) the zeros of
yðx; �iÞ in ða;1Þ are simple, so a4 z1 < � � � < zi. If z1 6¼ a, then yðx; �iÞ has at
least i simple zeros in ða; x2 þ 1Þ. Due to the continuous dependence on �, yðx; �Þ
has also i simple zeros for all � sufficiently close of �i, contradicting the definition
of �i as inf Li. Consequently we must have z1ðjÞ & z1 ¼ a and yðx; �iÞ may have at
most i� 1 zeros in ða;1Þ.

Every yðx; �Þ has, according to (2.4), at least k � 1 zeros at x ¼ a and since
z1ðjÞ & a as j!1, it follows that yðx; �iÞ has (at least) k zeros at x ¼ a. No zero
other than z1ðjÞ can tend to x ¼ a as j!1 otherwise yðx; �iÞ would have more
than k zeros at x ¼ a, which contradicts (2.7). So the zero of yðx; �iÞ at x ¼ a is
exactly of multiplicity k. Thus yðx; �iÞ is an eigenfunction of (1.1), (1.13), and it
has precisely i� 1 zeros in ða;1Þ. This characterization shows that �i<�iþ1.

The sequence �i is unbounded. If, on the contrary, �i2 ½0;�� for all i, then
�i ! ~�� and we could extract from the sequence yðx; �iÞ a subsequence which
converges to a nontrivial solution yðx; ~��Þ of (1.1) with infinitely many zeros in
some ½a; x2�, which is impossible.

(viii) These are all the eigenvalues. Are these �i-s all the eigenvalues of (1.1),
(1.13) or perhaps there are additional ones which are not tractable by the process of
(vii)? More explicitly, it is pointed out in (vii) that when �2Li decreases toward
inf Li, the first simple zero of yðx; �Þ in ða;1Þ tends to a. Is this the only way that
zeros of yðx; �Þ meet x ¼ a or are there more values of �, other than the numbers
inf Li, for which some zeros may meet x ¼ a and thus generate additional eigen-
values and eigenfunctions?

This question is not elaborated in [11]. It may be shown as in [2, Lemma 10.6] that
there exists only one eigenfunction which has precisely i� 1 zeros in ða;1Þ. Hence
the above scenario never happens and all eigenvalues are indeed obtained by (vii).

This completes the proof of Theorem 2 (Discrete Spectrum Case). &

3. The Continuous Spectrum Case

In this section we prove Theorem 3. It is assumed that (1.11)� holds for some
�< n� 1 but (1.12) does not hold and that � 6¼ 0. In this case all solutions of (1.1)
are nonoscillatory but none of them is asymptotic to any polynomial.
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It was proved in Proposition 20 that for every � 6¼ 0, sgn½��p� ¼ ð�1Þn�k, the
k þ 1 solutions u0; . . . ; uk satisfy the n� k singular boundary conditions of (1.13)
at x ¼ 1 and some linear combination of them satisfies the k boundary conditions
of (1.13) at x ¼ a. Thus, for every � 6¼ 0 the boundary value problem (1.1), (1.13)
has a solution, say yðx; �Þ ¼

Pk
i¼0 ciui. For � ¼ 0 this does not hold, since only k

solutions satisfy (1.14) and, as mentioned in the proof of Proposition 20, � ¼ 0
belongs to the discrete case.

There are similarities and differences between the discrete and continuous
cases. For the present yðx; �Þ, we see as in (2.7) that

VðxÞ� n� k; a4 x<1; ð3:1Þ
and the zero of yðx; �Þ at x ¼ a must be precisely of order k. Consequently we
conclude that yðx; �Þ is essentially unique and it may be represented as

yðx; �Þ ¼

u0ðx; �Þ � � � ukðx; �Þ
u0ða; �Þ � � � ukða; �Þ

..

.

u
ðk�1Þ
0 ða; �Þ � � � u

ðk�1Þ
k ða; �Þ

���������

���������
: ð3:2Þ

As in Section 2(iv), the zeros of this yðx; �Þ are simple, too.
The normalization of yðx; �Þ is completely different from that in the discrete

case. Since

yðk�1Þðx; �Þ ! 1; yðkÞðx; �Þ ! 0 as x!1;

no normalization at x ¼ 1 makes sense. Instead, a proper normalization may be

yðkÞða; �Þ ¼ 1:

In contradiction with the discrete case, we do not claim here uniform conti-
nuity of yðx; �Þ on ½a;1Þ. All we can say is that when �! ~��, yðx; �Þ converges to
yðx; ~��Þ, uniformly on compact intervals. See [3, Example 1].

We neither claim that the zeros are uniformly bounded for �2 ½�1;�2�. In fact,
the opposite is true and this is a key ingredient in the understanding of the Con-
tinuous Spectrum Case. This is discussed next.

(i) How do the zeros of yðx; �Þ vary? As in Section 2(vi) we conclude that
yðx; �Þ has arbitrary many zeros in ða;1Þ for sufficiently large values of �. Where
do these zeros come from as � varies?

Since yðx; �Þ is continuous in � and its zeros in ða;1Þ are always simple, these
zeros are continuous functions of �. Due to their simplicity, the zeros cannot
appear by splitting from double zeros (or disappear by coalescing into double
zeros). Thus their number may change as � varies only as they enter or leave
the interval ða;1Þ through its endpoints. But since the zero of yðx; �Þ at x ¼ a is
precisely of order k for every �, no additional zero may approach a. Thus a zero
is added to yðx; �Þ in ða;1Þ only when it enters the interval through x ¼ 1.

Let z
ð0Þ
1 ð�Þ< z

ð0Þ
2 ð�Þ< � � � < z

ð0Þ
h ð�Þ be all the zeros of yðx; �Þ which approach

þ1 as � tends to some ~��. Due to the k boundary conditions yðiÞðaÞ ¼ 0,
i ¼ 0; . . . ; k � 1, the derivatives yðiÞðx; �Þ, i ¼ 1; . . . ; k; also have zeros
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z
ðiÞ
1 < z

ðiÞ
2 < � � � < z

ðiÞ
h such that

z
ðiÞ
1 < z

ði�1Þ
1 < z

ðiÞ
2 < z

ði�1Þ
2 < � � � < z

ðiÞ
h < z

ði�1Þ
h ; i ¼ 1; . . . ; k:

Since their total number is unknown yet, we agree that zðiÞm denotes the zero of
yðiÞðx; �Þ which is closest to zði�1Þ

m on its left hand side. Due to the n� k boundary
conditions of (1.13) at x ¼ 1, the higher derivatives yðiÞðx; �Þ, i ¼ k þ 1; . . . ; n,
also have zeros which are ordered now so that

z
ði�1Þ
1 < z

ðiÞ
1 < z

ði�1Þ
2 < z

ðiÞ
2 < � � � < z

ði�1Þ
h < z

ðiÞ
h ; i ¼ k þ 1; . . . ; n:

Our first claim is that all these zeros tend to þ1 as �! ~��. Suppose on the
contrary that this is false and for some t, 14 t4 k, z

ðt�1Þ
1 !1 while z

ðtÞ
1 which is

on its left hand side remains bounded by some constant K as some subsequence
of �-s converges to ~��. Obviously yðt�1Þðx; �ÞyðtÞðx; �Þ< 0 on ðzðtÞ1 ; z

ðt�1Þ
1 Þ and as

�! ~��, we get

yðt�1Þðx; ~��ÞyðtÞðx; ~��Þ< 0 on ½K;1Þ:
Thus yðx; ~��Þ satisfies inequalities (1.4) for some q4 t � 1< k, in contradiction
with (3.1). A similar argument applies to the zeros of the derivatives of order
bigger than k.

Let all the zeros of yðiÞðx; �Þ, i ¼ 0; . . . ; n� 1, which approach x ¼ þ1 as
�! ~�� (and none but them) be in some interval ½M;1Þ. By using the k boundary
conditions at x ¼ a and the n� k boundary conditions at x ¼ 1, we have seen that
each yðtÞðx; �Þ, t ¼ 1; . . . ; n, has at least h zeros in ½M;1Þ. If between two con-
secutive zeros of yðt�1Þðx; �Þ there is more than one zero of yðtÞðx; �Þ or if yðtÞðx; �Þ
has any zero in ðzðt�1Þ

h ;1Þ, then by the same argument we conclude that also

yðtþ1Þðx; �Þ; . . . ; yðnÞðx; �Þ have strictly more than h zeros in ½M;1Þ. Since
yðnÞ ¼ ��py, this leads to a contradiction with the number of zeros of
yðt�1Þðx; �Þ. Hence, between each two consecutive zeros of yðt�1Þðx; �Þ which tend
to þ1, yðtÞðx; �Þ has exactly one zero and no other zeros in ½M;1Þ.

The next aim is to show that in fact h ¼ 1, i.e., only one zero of yðx; �Þ
may approach þ1 as �! ~��. Suppose on the contrary that h5 2 and
z
ðiÞ
1 ð�Þ; . . . ; z

ðiÞ
h ð�Þ ! 1 as �! ~��, i ¼ 0; . . . ; n. yðx; �Þ eventually satisfies

inequalities (1.4) with q ¼ k (since VðxÞ ¼ n� kÞ:

yðiÞðx; �Þ> 0 on ðzðiÞh ð�Þ;1Þ; i ¼ 0; . . . ; k;

ð�1Þi�kyðiÞðx; �Þ> 0; on ðzðiÞh ð�Þ;1Þ; i ¼ k; . . . ; n:

On the other hand, since equation (1.1) is ðk; n� kÞ-disfocal for every �, there
exists a solution u such that

uðiÞ> 0; i ¼ 0; . . . ; k;

ð�1Þi�kuðiÞ> 0; i ¼ k; . . . ; n;

on some ½M2;1Þ, where M2 is some fixed constant, and M2 is the same for every �
in ½~��� 1; ~��þ 1�.
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Let � be so close to ~�� that z
ðkÞ
1 ð�Þ>M2, i.e., all the diverging zeros are in

½M2;1Þ. First we discuss the case when h is an even integer, say h ¼ 2r5 2. Then
yðx; �Þ< 0 in ðzð0Þ1 ; z

ð0Þ
2 Þ [ � � � [ ðz

ð0Þ
2r�1; z

ð0Þ
2r Þ while, of course, u> 0 there. Consider

yðx; �Þ þ �u as � grows, starting from 0. For � ¼ 0 the zeros of yþ �u are the
h ¼ 2r simple zeros of yðx; �Þ and as � grows, the zeros that emerge from the z

ð0Þ
j -s

come nearer until one of the pairs coalesces inside some interval ðzð0Þ2q�1; z
ð0Þ
2q Þ. For

the same �, yþ �u> 0 on ½M2; z
ð0Þ
1 Þ and on ½zð0Þ2r ;1Þ. A similar thing happens for

the other derivatives of yþ �u. Let A be the smallest value of � for which two
zeros of one of the derivatives meet. It is impossible that this will happen for all
the derivatives at once since as x crosses a double zero, VðxÞ decreases by 2 and
this cannot happen n times for the solution yþ Au. Therefore some derivative
ðyþ AuÞðt�1Þ

still has h distinct zeros while the consecutive one, ðyþ AuÞðtÞ has
only h� 2 changes of sign in ½M;1Þ, contradiction!

When h is odd, say h ¼ 2r þ 15 3, the situation is slightly different. Now
yðx; �Þ> 0 in ðzð0Þ1 ; z

ð0Þ
2 Þ [ � � � [ ðz

ð0Þ
2r�1; z

ð0Þ
2r Þ [ ðz

ð0Þ
2rþ1;1Þ and we follow the zeros

of yðx; �Þ � �u as � grows, starting from 0 till a multiple zero appears. The only
difference from the previous case is that here a zero coming from1 may appear in
ðzð0Þ2rþ1;1Þ or a zero which emerges from z

ð0Þ
2rþ1 may disappear at1 for a certain �.

Except this detail, a contradiction is encountered for the first value of � for which
some ðyþ �uÞðtÞ has a double zero.

Thus, it is verified that the number of zeros of yðx; �Þ in ða;1Þ varies with �
only when one simple zero approaches x ¼ 1. See Example 4.

(ii) yðx; �Þ for small values of �:The behaviour of yðx; �Þ for small values of � is
tricky. Let wðxÞ ¼ lim�!0 yðx; �Þ where � tends to zero, possibly through some
suitable subsequence. Note that yðx; �Þ is not defined at all for � ¼ 0. wðxÞ is
obviously a solution of yðnÞ ¼ 0 and it satisfies the k boundary conditions of
(1.13) at x ¼ a, i.e., it is a polynomial of order k at least. It is evident that such
polynomial cannot satisfy also the n� k boundary conditions of (1.13) at x ¼ 1.
This is not surprising since, as yðx; �Þ is not uniformly continuous on ½a;1Þ, there is
no reason to expect that boundary conditions at x ¼ 1 are preserved by the limit
lim�!0 yðx; �Þ.

At every fixed point x0, yðiÞðx0; �Þ ! wðiÞðx0Þ, i ¼ 0; . . . ; n, as �! 0. If wðxÞ is
a polynomial of order h, we have for large values of x0,

lim
�!0

yðiÞðx0; �Þ ¼ wðiÞðx0Þ> 0; i ¼ 0; . . . ; h:

If h> k, yðx0; �Þ; . . . ; yðhÞðx0; �Þ> 0 contradict (3.1). Hence wðxÞ is exactly of order
k and due to the boundary conditions at x ¼ a and the normalization, we have

lim
�!0

yðx; �Þ ¼ wðxÞ ¼ ðx� aÞk=k!:

As in (i), we conclude that yðx; �Þ may have at most one zero z1 ¼ z1ð�Þ that
tends to þ1 as �! 0. If yðx; �iÞ has exactly one zero in ða;1Þ for small values
of �, it follows by the definition that �1 ¼ 0. Otherwise, if yðx; �Þ has no zero in
ða;1Þ for small values of �, then �1 6¼ 0. In fact, we guess that this is always the
case.
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(iii) The existence of eigenvalues. The other details of Theorem 3 are verified
similarly to those of Theorem 2. For example, for large values of �, yðx; �Þ has
arbitrary many zeros. It turns out that �i are those values of � for which a single sim-
ple zero of yðx; �Þ enters ða;1Þ through x ¼ 1. Also the sequence �i cannot be
bounded. Otherwise, if �i ! ~��, the limit solution limi!1 yðx; �iÞ ¼ yðx; ~��Þ would
have infinitely many zeros in ða;1Þ, which contradicts the eventual disconjugacy of
equation (1.1).

This completes the proof of Theorem 3. &

4. Comparison of the Discrete and Continuous Cases

In both the Discrete Spectrum Case and the Continuous Spectrum Case we
utilized families of solutions yðx; �Þ. At first sight they seem different: In the
discrete case, yðx; �Þ is defined by the n� 1 boundary conditions (2.4), while in
the continuous case, yðx; �Þ satisfies the n boundary conditions (1.13). However,
the correct way to examine these solutions is not through the number of boundary
conditions but rather by their codimensions, i.e., the dimensions of the solution
spaces which are determined by them.

In the discrete case the k � 1 regular boundary conditions of (2.4) at x ¼ a are
obviously satisfied by n� k þ 1 solutions; the n� k singular boundary conditions
of (2.4) at x ¼ 1 are satisfied, according to Proposition 20, precisely by the k
solutions u0; . . . ; uk�1. Hence the n� 1 boundary conditions (2.4) have in this case
codimensions n� k þ 1, k, respectively.

For the continuous case the k conditions of (1.13) at x ¼ a are satisfied by
n� k solutions, and the n� k singular conditions of (1.13) at x ¼ 1 are satisfied
precisely by the k þ 1 solutions u0; . . . ; uk�1; uk. Now the n boundary conditions
(1.13) which define yðx; �Þ in the continuous case, have codimensions n� k,
k þ 1, respectively. Thus, the two boundary conditions which define the solutions
yðx; �Þ in the two cases are related by the interchanges a !1 and k � 1 ! k.

The duality between the roles of the endpoints x ¼ a and x ¼ 1 goes further
on. For the discrete case zeros of yðx; �Þ enter the interval ða;1Þ through x ¼ a
while in the continuous case this happens through x ¼ 1. In the discrete case
yðx; �Þ is normalized by yðk�1Þð1Þ ¼ 1 while in the continuous case the natural
normalization is yðkÞðaÞ ¼ 1.

There is another way to observe the duality between the boundary conditions
which define the corresponding solutions yðx; �Þ in the two cases. Recall that in the
continuous case, the singular boundary conditions of (1.13) are designated to
select the k þ 1 solutions u0; . . . ; uk�1; uk. But the same solution space can be
selected also by a different set of boundary conditions. It was seen by (1.20) that
in the continuous case uq�1, uq, q�ðmod kÞ, satisfy

uðiÞ ! 1; i ¼ 0; . . . ; q� 1;

uðiÞ ! 0; i ¼ q . . . ; n� 1:

Therefore, the n� k � 1 singular boundary conditions

lim
x!1

yðiÞðxÞ ¼ 0; i ¼ k þ 1; . . . ; n� 1;
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allow q4 k, i.e., u0; . . . ; uk�1, uk and reject q5 k þ 2, i.e., ukþ1, ukþ2; . . . ; un�1.
Consequently, in the continuous case the n� 1 ¼ k þ ðn� k � 1Þ conditions

yðiÞðaÞ ¼ 0; i ¼ 0; . . . ; k � 1;

lim
x!1

yðiÞðxÞ ¼ 0; i ¼ k þ 1; . . . ; n� 1; ð4:1Þ

define the same yðx; �Þ as do the n conditions (1.13). Thus, (4.1) is the continuous
case analogue to the n� 1 ¼ ðk � 1Þ þ ðn� kÞ boundary conditions (2.4) of the
discrete case and it is again achieved by the interchange k � 1 ! k:

From the proof of Theorems 2 and 3 it turns out that in both cases
yðx; �iÞ=xk ! 0 as x!1. Indeed, in Theorem 2 we must have yðx; �Þ ¼Pk�1

i¼0 ciuiðx; �Þ � xk�1=ðk � 1Þ!: In the proof of Proposition 20 we saw that in
the continuous case yðkÞðx; �Þ ¼

Pk
i¼0 ciu

ðkÞ
i ðx; �Þ ! 0. Therefore,

Corollary. In both the discrete and the continuous spectrum cases the bound-
ary conditions (1.13) can be replaced by

yðiÞðaÞ ¼ 0; i ¼ 0; . . . ; k � 1;

lim
x!1

yðxÞ=xk ¼ 0:

5. Examples

We start with some equations which satisfy the integrability condition (1.12)
and Theorem 2.

Example 1.

yð4Þ � �x�8y ¼ 0;

yð1Þ ¼ y0ð1Þ ¼ y00ð1Þ ¼ y000ð1Þ ¼ 0: ð5:1Þ

The equation satisfies (1.12) with n ¼ 4 and a basis of solutions with convenient
asymptotic behaviour as x!1 is

u0 ¼ x3½ sinh ð�=xÞ � sin ð�=xÞ� ! �3=3;

u1 ¼ x3½ cosh ð�=xÞ � cos ð�=xÞ� ! �2x;

u2 ¼ x3 sinh ð�=xÞ ! �x2;

u3 ¼ x3 cosh ð�=xÞ ! x3; � ¼ �1=4:

Hence we look for a combination y ¼ c0u0 þ c1u1 with a double zero at x ¼ 1.
This happens when � ¼ �4 ¼ ð�

2
þ �nÞ4, n ¼ 1; 2; . . . :

Similarly, for the problem

yð4Þ þ �x�8y ¼ 0;

yð1Þ ¼ y0ð1Þ ¼ y00ð1Þ ¼ y000ð1Þ ¼ 0; ð5:2Þ
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�> 0, the solution yðx; �Þ ¼ x3½ cosh ð�=xÞ sin ð�=xÞ � cos ð�=xÞ sinh ð�=xÞ�,
� ¼ �1=4, satisfies the three boundary conditions at x ¼ 1. yð1Þ ¼ 0 holds when
tan ð�Þ ¼ tanh ð�Þ, �> 0, and the eigenvalues are �n ¼ ð�nÞ4 � ð�2 þ �nÞ4.

Example 2. Consider the eigenvalue problem

y00 þ �ð cosh xÞ�2
y ¼ 0; 04 x<1;

yð0Þ ¼ y0ð1Þ ¼ 0: ð5:3Þ

Here ðcosh xÞ�2 � 4e�2x satisfies (1.12). The equation is transformed by t ¼
tanh x ¼ ðe2x � 1Þ=ðe2x þ 1Þ, yðxÞ ¼ vðtÞ, into the Legendre equation

ð1� t2Þv00 � 2tv0 þ �v ¼ 0; 04 t< 1:

For � ¼ 2nð2n� 1Þ, the Legendre polynomial P2n�1ðtÞ satisfies P2n�1ð0Þ ¼ 0,
P2n�1ð1Þ 6¼ 0 and has exactly n� 1 simple zeros in (0, 1). Consequently

�n ¼ 2nð2n� 1Þ ynðxÞ ¼ P2n�1

�
e2x � 1

e2x þ 1

�
; n ¼ 1; 2; . . .

Example 3. The boundary value problem

y00 þ �ðx2 þ 1Þ�2
y ¼ 0; 04 x<1;

yð0Þ ¼ y0ð1Þ ¼ 0; ð5:4Þ
satisfies (1.12). The general solution of the equation isffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ 1
p

½c0 cos ð
ffiffiffiffiffiffiffiffiffiffiffi
�þ 1
p

arctan xÞ þ c1 sin ð
ffiffiffiffiffiffiffiffiffiffiffi
�þ 1
p

arctan xÞ�
[6, 2.365], and its bounded solution is

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 1
p

sin ð
ffiffiffiffiffiffiffiffiffiffiffi
�þ 1
p

ðarctan x� �
2
ÞÞ, i.e.,

y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 1
p

sin ð
ffiffiffiffiffiffiffiffiffiffiffi
�þ 1
p

arcsinðx2 þ 1Þ�1=2Þ. It satisfies yð0Þ ¼ 0 if
ffiffiffiffiffiffiffiffiffiffiffi
�þ 1
p

¼
2n, n ¼ 1; 2; . . . With the notation sin � ¼ ðx2 þ 1Þ�1=2

, this is y ¼ sin ð2n�Þ=
sin � ¼ U2n�1ð cos �Þ; where Uk denotes the Chebychev polynomials of the second
type. Hence,

�n ¼ 4n2 � 1; unðxÞ ¼ U2n�1

�
xffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ 1
p

�
; n ¼ 1; 2; . . .

Now we turn to an example which satisfies (1.11)� and demonstrates Theorem 3.

Example 4. The differential equation

y00 þ �

x2 log x
y ¼ 0; 1< x<1; ð5:5Þ

satisfies (1.11)� for every �< 1 but not (1.12). (5.5) has a solution

yðx; �Þ ¼ log x

�
1þ

X1
k¼1

ð1� �Þð2� �Þ � � � ðk � �Þ
k!ðk þ 1Þ! ð log xÞk

	
ð5:6Þ

and for every integer � ¼ n, this solution is

yðx; nÞ ¼ log x L
ð1Þ
n�1ð log xÞ; ð5:7Þ
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where Lð�Þm ðtÞ denotes the Laugerre polynomials. For every � 6¼ 0 the solution
yðx; �Þ satisfies the boundary conditions yð1Þ ¼ y0ð1Þ ¼ 0 and for every �,
n� 1<�4 n, yðx; �Þ has precisely n� 1 simple zeros in ð1;1Þ. Hence
�n ¼ n, n ¼ 1; 2; . . .

Proof. The substitution t ¼ log x, yðxÞ ¼ tvðtÞ transforms Equation (5.5) into

tv00 þ ð2� tÞv0 þ ð�� 1Þv ¼ 0; 0< t<1:

This is Laguerre’s differential equation of type � ¼ 1 (with � replaced by �� 1),
and its only solution which is regular at t ¼ 0 is

vðt; �Þ ¼ 1þ
X1
k¼1

ð1� �Þð2� �Þ � � � ðk � �Þ
k!ðk þ 1Þ! tk:

All other solutions have a logarithmic singularity at t ¼ 0. This yields (5.6). When
� is an integer, say � ¼ n, v reduces to a Laguerre polynomial and yðx; nÞ ¼
log xL

ð1Þ
n�1ð log xÞ.

It is shown in [3] that for noninteger �, yðx; �Þ � x=ð log xÞ� as x!1. This,
together with (5.7), shows that yðx; �Þ satisfies the boundary conditions yð1Þ ¼
y0ð1Þ ¼ 0 for every �> 0.

By known properties of Laguerre polynomials, yðx; nÞ has precisely n� 1
simple zeros on ð1;1Þ. By Sturm’s comparison theorem it follows that as �
increases, the number of zeros of yðx; �Þ in ð1;1Þ does not decrease. Hence
our claim will be completed if we show that yðx; �Þ, n<�< nþ ", has in
ð1;1Þ precisely one more zero than yðx; nÞ has, namely n zeros. To this purpose
we rewrite (5.6) as

yðx; �Þ ¼
Xn�1

k¼0

ð1� �Þð2� �Þ � � � ðk � �Þ
k!ðk þ 1Þ! ð log xÞkþ1

þ ð�1Þnð�� 1Þð�� 2Þ � � � ð�� nÞð log xÞnþ1

�
X1
k¼n

ðnþ 1� �Þ � � � ðk � �Þ
k!ðk þ 1Þ! ð log xÞk�n

�P�ðxÞ þ Q�ðxÞ: ð5:8Þ
Let x0 be an arbitrary fixed point larger than the zeros of L

ð1Þ
n�1ð log xÞ. Then on the

compact interval ½1; x0�,

P�ðxÞ ! log x L
ð1Þ
n�1ð log xÞ; Q�ðxÞ ¼ Oðj�� njÞ as �! n:

Therefore yðx; �Þ has exactly n� 1 simple zeros on ð1; x0� as �! n:
Now consider yðx; �Þ on ½x0;1Þ. By the choice of x0 and for n<�< nþ 1,

ð�1Þn�1
P�ðxÞ> 0 on ½x0;1Þ, and in fact

0< ð�1Þn�1
P�ðxÞ4Að log xÞn on ½x0;1Þ:

On the other hand, for n<�< nþ 1 all terms of Q�ðxÞ are of the same sign, so

ð�1ÞnQ�ðxÞ5Bð log xÞnþ1 > 0 for x> 1:
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Also Q�ðxÞ ¼ Oð�� nÞ on any compact set. Thus, at x ¼ x0, Q�ðx0Þ=P�ðx0Þ is as
small as we wish provided that we take a � sufficiently close to n. For this fixed �,
Q�ðxÞ=P�ðxÞ ! �1 as x!1. Consequently, yðx; �Þ ¼ P�ðxÞ½1þ Q�ðxÞ=P�ðxÞ�
must have a zero in ðx0;1Þ as �! nþ. So our yðx; �Þ has at least n zeros in
ð1;1Þ. &

The boundary value problem yðaÞ ¼ y0ð1Þ ¼ 0, a> 1, can be treated as well.
Here one needs to consider also the second solution of (5.5), zðx; �Þ ¼
yðx; �Þ

Ð
y�2ðx; �Þ, dx. See [3] for details.
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