
If we take another look at our example where

p(x) = (x − 1)(x − 2)4(x − 3)2(x − 4),

then we now find the bounds 2 + 4/7 ≤ η5 ≤ 3 − 2/7, which are an improvement over
what we previously found. Furthermore, our technique is probably simple enough to
allow for the computation of more complicated bounds, which take into account the
separation between other roots as well.
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Qualitative Analysis of a
Differential Equation of Abel

Uri Elias

In courses on differential equations, qualitative behaviour is frequently demonstrated
via equations like y′ = y(1 − y) or y′ = 1 − y3. Our aim is to show by elementary
means that the naive looking

y′ = sin t − y3

(an Abel equation in canonical form, see [1, p. 24]) is a useful instrument to display
rich qualitative properties such as extendability and finite escape time, stability and
instability, boundedness, and periodicity. We show the following:

(a) The equation has a unique solution that is defined on (−∞, ∞). This solution
is periodic.

(b) As t increases, each solution is attracted into the strip |y| < 1 in a uniformly
bounded time interval. Any two solutions y1(t), y2(t) satisfy

lim
t→+∞

(
y1(t) − y2(t)

) = 0.

(c) As t decreases, each solution, except the periodic one, has a finite escape
time. Namely, for each nonperiodic solution y(t) there exists some τ such that
limt↘τ+ |y(t)| = ∞.

Let us outline the proof of these properties. See Figure 1.
In the half plane y > 1 each solution decreases. Let us separate the discussion into

the domains y ≥ 2 and 1 ≤ y ≤ 2. Above the line y = 2, y′ = sin t − y3 ≤ 1 − y3 <
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Figure 1. Four solutions, the periodic one is dashed.

−y3/2, so for any t2 > t1, integrating the inequality y−3 y′ ≤ −1/2 from t1 to t2 yields

1/y2(t2) − 1/y2(t1) ≥ t2 − t1.

Therefore each solution y(t) decreases from any value y(t1) > 2 to y(t2) = 2 during a
time interval [t1, t2] satisfying t2 − t1 ≤ 1/4. For 1 ≤ y ≤ 2,

y′ = sin t − y3 ≤ sin t − 1,

so for t3 > t2 we have

y(t3) − y(t2) ≤
∫ t3

t2

(sin t − 1) dt = − cos t3 + cos t2 − (t3 − t2) ≤ 2 − (t3 − t2).

This rough estimate implies that y(t) decreases from y(t2) = 2 to y(t3) = 1 during
an interval [t2, t3] with t3 − t2 ≤ 3. Once a solution arrives at any point (t3, 1), it must
cross from y > 1 into |y| < 1. For, if sin t3 < 1 then y′(t3) < 0, while if sin t3 = 1 then
the conclusion follows by y′ = y′′ = 0, y′′′ = −1. The half plane y < −1 is treated
similarly and the first part of (b) is verified.

As t decreases from an initial point t0 with y(t0) > 1, the situation is reversed and
the solution is destined to blow up at some finite τ < t0. Indeed, if it does not blow
up by the time t1, t1 = t0 − 3 1

4 , then working forward from t1, the previous paragraph
implies y(t0) ≤ 1. The same argument holds for y(t0) < −1.

To verify the second sentence of (b), consider any two different solutions y1(t) and
y2(t). Since solutions do not intersect, we may assume without loss of generality that
y2(t) > y1(t) for all t . By the inequality u3 − v3 ≥ (u − v)3/4 for ∞ > u > v > −∞
(which follows from min(−∞,∞)(x3 − 1)/(x − 1)3 = 1/4), we have

(y2 − y1)
′ = −(y3

2 − y3
1) ≤ −(y2 − y1)

3/4 < 0.

Integrating the inequality (y2 − y1)
−3(y2 − y1)

′ ≤ −1/4 from t0 to t leads to

0 ≤ y2(t) − y1(t) ≤ [
(t − t0)/2 + (y2(t0) − y1(t0))

−2
]−1/2 → 0 as t → ∞.

Finally we show that between the continuum of solutions that escape in finite time to
+∞ and those that escape to −∞, there hides precisely one solution which is defined
on the whole (−∞, ∞). Let yαβ be the solution which is defined by the initial value
y(α) = β, and let U (respectively L) be the set of points (α, β) such that the solution
yαβ escapes at some time τ < α to +∞ (to −∞). U is the basin of attraction of +∞.
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Then

(i) as shown above, U contains the half plane y > 1,

(ii) by the definition of U , (α, β) ∈ U implies that (t, yαβ(t)) ∈ U for every ad-
missible t ,

(iii) (α, β) ∈ U implies (α, γ ) ∈ U for γ > β, since solutions do not intersect.

U is an open set: if (α, β) ∈ U , there exists t1 < α such that yαβ(t1) > 10. Due
to the continuous dependence of a solution on the initial value condition, yγ δ(t1) > 9
provided that (γ, δ) is sufficiently close to (α, β). By (i), the solution yγ δ too escapes
to +∞ and consequently (γ, δ) ∈ U . Similar arguments apply to L . Thus U , L are
two open, disjoint sets.

Take any point (α, β) not in U ∪ L . By (ii), the graph of the solution yαβ cannot
enter either U or L . Hence yαβ is bounded, −1 ≤ yαβ ≤ 1. If, in particular, (α, β) ∈
∂U , the boundary of U , then the graph (t, yαβ(t)) of the corresponding solution must
coincide with ∂U . Otherwise, if the graph leaves ∂U (and, of course, does not enter U ),
there exists t1 such that (t1, yαβ(t1)) �∈ ∂U . Take some η > yαβ(t1) such that (t1, η) �∈
U . Then the graph of the corresponding solution yt1η(t) stays out of U . Since solutions
do not intersect, yt1η(t) > yαβ(t) for every t . This contradicts the fact that the graph
(t, yαβ(t)) meets ∂U at (α, β).

Let us denote the solution whose graph coincides with ∂U by yu(t). Obviously
yu(t + 2π) is a solution, bounded as well. If yu(t) �≡ yu(t + 2π) then they never in-
tersect and, by the previous argument, they must satisfy yu(t + 2π) < yu(t) for ev-
ery t . However the same can be said about yu(t − 2π) and we conclude that also
yu(t − 2π) < yu(t) for every t . This inequality, with t replaced by t + 2π , contradicts
the previous one. Hence yu(t + 2π) ≡ yu(t) and yu(t) is 2π-periodic.

The same analysis can be carried out for the solution y
(t) whose graph is the
boundary of L , and it turns out that y
 is periodic as well. On the other hand, by (b),
limt→+∞

(
yu(t) − y
(t)

) = 0 and for two periodic solutions this may happen only if
yu(t) ≡ y
(t). So yu is the only bounded solution and its graph is the boundary of both
U and L . By (b) and (c), yu(t) is globally asymptotic stable as t → ∞ and unstable as
t → −∞.
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Closed Curves on Spheres

W. Holsztyński, J. Mycielski, G. C. O’Brien and S. Świerczkowski

Let S2 denote the unit sphere {(x, y, z) : x2 + y2 + z2 = 1}. By a path on S2 we mean
a continuous function f : [0, 1] → S2. The length λ( f ) of the path is defined by the
formula
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