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1. Introduction and main results

In [2], the Sturm comparison theorem for second-order differential equations of the form

u00 þ pðtÞu ¼ 0 for t [ ða; bÞ

was established for the two singular situations

(i) when the coefficient p is unbounded near the endpoints a; b [ R of the interval,

(ii) when a ¼ 21 or b ¼ 1 so that the interval ða; bÞ is unbounded.

In both cases, the conventional assumption that a solution u vanishes twice is replaced by

the two boundary conditions

ð
a

dt

u2ðtÞ
¼ 1 and

ðb dt

u2ðtÞ
¼ 1:

In this work, we denote Z as the set of integers and formulate a discrete analogue of

case (ii) for sequences u :¼ {uk}k[N0
and for Sturm–Liouville difference equations of the

form

D2uk þ pkukþ1 ¼ 0 for k [ Z; ð1Þ

where D denotes the forward difference operator defined by Duk ¼ ukþ1 2 uk. Together

with (1), we consider another Sturm–Liouville difference equation of the form

D2vk þ Pkvkþ1 ¼ 0 for k [ Z; ð2Þ
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and we assume throughout that

Pk $ pk for all k [ Z: ð3Þ

The Sturm comparison theorem for second-order difference equations on a finite set

½M;N�Z :¼ ½M;N�> Z with M;N [ Z and M , N is usually formulated and proved

using the concept of disconjugacy (see [1,5,8] and [9, Theorem 6.19]). Here, we want to

give a formulation that relies rather on generalized zeros and a proof that is elementary and

more straightforward without the detour through disconjugacy. In Theorem 1.2 below and

throughout, we use the following well-known concept of a generalized zero at m [ Z.

Definition 1.1 (Generalized zero at an integer). A solution u of (1) (or (2)) is said to

have a generalized zero at m [ Z provided that either um ¼ 0 or umumþ1 , 0.

Theorem 1.2 (Sturm comparison theorem on a finite interval). Let M;N [ Z with

M , N. Assume (3). Suppose u is a nontrivial solution of (1) with generalized zeros at M

and at N but without any generalized zeros in ½M þ 1;N 2 1�Z. Then any solution v of (2)

has at least one generalized zero in ½M;N�Z.

The main result of this paper is the following extension of Theorem 1.2 to infinite

intervals. In Theorem 1.4 below and throughout, we use the following concept of a

recessive solution at 1.

Definition 1.3 (Recessive solution at 1). A solution u of (1) (or (2)) is said to be

recessive at 1 provided that there exists m [ Z such that

ukukþ1 . 0 for all k [ ½m;1ÞZ and
X1
k¼m

1

ukukþ1

¼ 1:

Theorem 1.4 (Sturm comparison theorem on an infinite interval). Let M [ Z.

Assume (3). Suppose u is a solution of (1) which is recessive at 1 and has a generalized

zero at M but has no generalized zero in ½M þ 1;1ÞZ. Then any solution v of (2) is

recessive at 1 or has at least one generalized zero in ½M;1ÞZ.

Note that both Sturm comparison theorems (Theorems 1.2 and 1.4) also provide Sturm

separation theorems in the case when we have equality in all inequalities of (3). A ‘proper’

version of Theorem 1.4 that does not contain a Sturm separation theorem is as follows.

Theorem 1.5 (‘Proper’ Sturm comparison theorem on an infinite interval). Let

M [ Z. Assume (3) and

there exists ‘ [ ½M;1ÞZ such that P‘ . p‘: ð4Þ

Suppose u is a solution of (1) which is recessive at 1 and has a generalized zero at M but

has no generalized zero in ½M þ 1;1ÞZ. Then any solution v of (2) has at least one

generalized zero in ½M;1ÞZ.

In Section 2, we prove the above results and supply some examples. Section 3 deals

with the corresponding results in the double-infinite case.
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2. Auxiliary results, proofs and examples

In Lemma 2.1 below, we give several auxiliary formulae that are needed in the proof of

Theorem 1.4 below. These auxiliary results may be checked by simple calculations. As

these results also serve to supply a short proof of Theorem 1.2, we will present this proof

below as well.

Lemma 2.1. Let u and v be solutions of (1) and (2), respectively, and define the sequence w

by

wk :¼ vkDuk 2 ukDvk ¼ ukþ1vk 2 ukvkþ1:

(i) We have

Dwk ¼ ðPk 2 pkÞukþ1vkþ1:

(ii) If ukukþ1 – 0 at k [ Z, then

D
vk

uk

¼ 2
wk

ukukþ1

:

(iii) If vkvkþ1 – 0 at k [ Z, then

D
uk

vk

¼
wk

vkvkþ1

:

(iv) If u – 0 has a generalized zero at k [ Z but v does not and vkþ1 – 0, then

ukþ1

vkþ1

wk . 0:

(v) If u has a generalized zero at k [ Z but v does not, then

uk

vk

wk # 0:

Proof of Theorem 1.2. Suppose the claim is wrong, i.e. assume that v has no generalized

zero in ½M;N�Z, i.e. vkvkþ1 . 0 for all k [ ½M;N 2 1�Z and vNvNþ1 $ 0. First note that by

Lemma 2.1(iv)

uMþ1

vMþ1

wM . 0; so
ukþ1

vkþ1

wM $ 0 for all k [ ½M;N 2 1�Z

so that wM – 0 and, due to Lemma 2.1(i), the sequence w is on ½M;N�Z increasing if

wM . 0 and decreasing if wM , 0. Therefore,

wkwM $ w2
M . 0 for all k [ ½M;N�Z:
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By Lemma 2.1(iii), we thus have

wM

uN

vN

2
uM

vM

� �
¼ wM

XN21

k¼M

wk

vkvkþ1

$ w2
M

XN21

k¼M

1

vkvkþ1

$
w2

M

vMvMþ1

¼ wM

uMþ1

vMþ1

2 wM

uM

vM

and therefore, using Lemma 2.1(v) for the last inequality,

0 ,
uMþ1

vMþ1

wM #
uN

vN

wM #
uN

vN

wN # 0;

a contradiction. A

Now we prove the main result of this paper.

Proof of Theorem 1.4. Suppose the claim is wrong, i.e. assume that v is not recessive at 1

and has no generalized zero in ½M;1ÞZ, i.e. vkvkþ1 . 0 for all k [ ½M;1ÞZ and

X1
k¼M

1

vkvkþ1

, 1:

First note that by Lemma 2.1(iv)

uMþ1

vMþ1

wM . 0; so
ukþ1

vkþ1

wM $ 0 for all k [ ½M;1ÞZ

so that wM – 0 and, due to Lemma 2.1(i), the sequence w is on ½M;1ÞZ increasing if

wM . 0 and decreasing if wM , 0. Therefore,

wkwM $ w2
M . 0 for all k [ ½M;1ÞZ:

By Lemma 2.1(ii), we thus have for n [ ½M þ 1;1ÞZ

wM

vn

un

2
vMþ1

uMþ1

� �
¼ 2wM

Xn21

k¼Mþ1

wk

ukukþ1

# 2w2
M

Xn21

k¼Mþ1

1

ukukþ1

;

which tends to 21 as n !1 so that

un

vn

! 0 as n !1:

Moreover, by Lemma 2.1(iii)

wM

un

vn

2
uM

vM

� �
¼ wM

Xn21

k¼M

wk

vkvkþ1

$ w2
M

Xn21

k¼M

1

vkvkþ1

$
w2

M

vMvMþ1

¼ wM

uMþ1

vMþ1

2 wM

uM

vM

:

Hence, by letting n !1, we obtain

0 $ wM

uMþ1

vMþ1

. 0;

a contradiction. A

We next supply an example concerning Theorem 1.4.
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Example 2.2. Let

Pk ; 2 and pk ¼

3
2

for k [ ð21;21�Z;

2 1
2

for k [ ½0;1ÞZ:

8<
:

Thus, (3) holds. Then (1) has a solution u satisfying

u21 ¼ 0 and uk ¼ 22k for all k [ N0:

This solution u is recessive at 1 and has a generalized zero at 21 but has no generalized

zero in ½0;1ÞZ. By Theorem 1.4, any solution v of (2) has at least one generalized zero in

½21;1ÞZ. Since (2) is equivalent to the equation ukþ2 þ uk ¼ 0, this statement can also

easily be verified directly.

We now provide an example of how to construct a solution with two generalized zeros

in ½M;1ÞZ provided the assumptions of Theorem 1.4 hold under the additional condition

that strict inequality holds in (3) for at least one integer greater than or equal to M.

Theorem 2.3. Let M [ Z. Assume (3) and (4). Suppose u is a solution of (1) which is

recessive at 1 and has a generalized zero at M but has no generalized zero in

½M þ 1;1ÞZ. Then the solution v of (2) satisfying

v‘ ¼ u‘ and v‘þ1 ¼ u‘þ1

has at least one generalized zero in ½M; ‘�Z and at least one generalized zero in

½‘þ 1;1ÞZ.

Proof. First suppose that the first half of the claim is wrong, i.e. ‘ . M, vkvkþ1 . 0 for all

k [ ½M; ‘2 1�Z and v‘v‘þ1 $ 0. Then uMþ1vM . 0 and uMvMþ1 # 0 so that wM . 0.

Hence, by Lemma 2.1(i),

0 . 2wM ¼ w‘ 2 wM ¼
X‘21

k¼M

ðPk 2 pkÞukþ1vkþ1 $ 0;

a contradiction. Next suppose that the second half of the claim is wrong, i.e. vkvkþ1 . 0 for

all k [ ½‘þ 1;1ÞZ. Then for k [ ½‘þ 1;1ÞZ, using Lemma 2.1(i),

wk ¼ wk 2 w‘ ¼
Xk21

i¼‘

ðPi 2 piÞuiþ1viþ1 $ ðP‘ 2 p‘Þu
2
‘þ1 ¼: C . 0:

By Lemma 2.1(ii), for all n [ ½‘þ 1;1ÞZ,

1 $
v‘

u‘

2
vn

un

¼
Xn21

k¼‘

wk

ukukþ1

$ C
Xn21

k¼‘

1

ukukþ1

;

which tends to 1 as n !1, a contradiction. A

Using Theorems 2.3 and 1.4, we may now prove Theorem 1.5.
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Proof of Theorem 1.5. Since the assumptions are the same as in Theorem 2.3, the solution

of (2) defined in Theorem 2.3 has at least two generalized zeros in ½M;1ÞZ. Thus, by

Theorem 1.2 in the case of P ¼ p, i.e. the Sturm separation theorem on a finite interval,

any solution v must have at least one generalized zero in ½M;1ÞZ. A

3. The double-infinite case

In this final section, we establish the Sturm comparison theorem on the double-infinite

case Z. Our result contains a corresponding Sturm separation theorem. In Theorem 3.2

below and throughout, we use the following concept of a recessive solution at 21.

Definition 3.1 (Recessive solution at 21). A solution u of (1) (or (2)) is said to be

recessive at 21 provided that there exists m [ Z such that

ukukþ1 . 0 for all k [ ð21;m�Z and
Xm

k¼21

1

ukukþ1

¼ 1:

Theorem 3.2 (Sturm comparison theorem on a double-infinite interval). Suppose

u is a solution of (1) which is recessive at 21 and at 1 and has no generalized zero in Z.

Then any solution v of (2) is recessive at 21 or at 1 or has at least one generalized zero

in Z.

Proof. Suppose the claim is wrong, i.e. vkvkþ1 . 0 for all k [ Z and

X1
k¼0

1

vkvkþ1

, 1 and
X0

k¼21

1

vkvkþ1

, 1:

Without loss of generality, suppose that ukvk . 0 for all k [ Z (otherwise, we consider

~v ¼ 2v). Thus, by Lemma 2.1(i), w is increasing on Z. So there are only the following

three possibilities:

1. There exists M [ Z such that wM . 0. Then wk $ wM . 0 for all k [ ½M;1ÞZ.

Thus, for all n [ ½M;1ÞZ, using Lemma 2.1(ii),

vn

un

2
vM

uM

¼ 2
Xn21

k¼M

wk

ukukþ1

# 2wM

Xn21

k¼M

1

ukukþ1

;

which tends to 21 as n !1, and thus

un

vn

!1 as n !1:

Therefore, for all n [ ½M;1ÞZ, using Lemma 2.1(iii),

un

vn

2
uM

vM

¼
Xn21

k¼M

wk

vkvkþ1

$ wM

Xn21

k¼M

1

vkvkþ1

.
wM

vMvMþ1

¼
uMþ1

vMþ1

2
uM

vM

and hence, by letting n !1,

0 $
uMþ1

vMþ1

;

a contradiction.
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2. There exists M [ Z such that wM , 0. Then wk # wM , 0 for all k [ ð21;M�Z.

Thus, for all n [ ð21;M�Z, using Lemma 2.1(ii),

vMþ1

uMþ1

2
vn

un

¼ 2
XM

k¼n

wk

ukukþ1

$ 2wM

XM

k¼n

1

ukukþ1

;

which tends to 1 as n !21, and thus

un

vn

!1 as n !21:

Therefore, for all n [ ð21;M�Z, using Lemma 2.1(iii),

uMþ1

vMþ1

2
un

vn

¼
XM

k¼n

wk

vkvkþ1

# wM

XM

k¼n

1

vkvkþ1

,
wM

vMvMþ1

¼
uMþ1

vMþ1

2
uM

vM

and hence, by letting n !21,

0 # 2
uM

vM

;

a contradiction.

3. wk ¼ 0 for all k [ Z. Then we have ukþ1vk ¼ vkþ1uk for all k [ Z and hence

ukþ1

vkþ1

¼
uk

vk

;
u0

v0

¼: a for all k [ Z

so that uk ¼ avk for all k [ Z, where a . 0, a contradiction.

Since no other possibilities exist, the proof is complete. A

As in Theorems 2.3 and 1.5, we may also prove the following two results.

Theorem 3.3. Assume (3) and

there exists ‘ [ Z such that P‘ . p‘: ð5Þ

Suppose u is a solution of (1) which is recessive at 21 and at 1 and has no generalized

zero in Z. Then the solution v of (2) satisfying

v‘ ¼ u‘ and v‘þ1 ¼ u‘þ1

has at least one generalized zero in ð21; ‘�Z and at least one generalized zero in

½‘þ 1;1ÞZ.

Theorem 3.4 (‘Proper’ Sturm comparison theorem on a double-infinite

interval). Assume (3) and (5). Suppose u is a solution of (1) which is recessive at

21 and at 1 and has no generalized zero in Z. Then any solution v of (2) has at least one

generalized zero in Z.
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Example 3.5. Let

Pk ¼
2 1

2
for k [ Zn{21};

2 for k ¼ 21;

(
and pk ¼

2 1
2

for k [ Zn{21};

1 for k ¼ 21:

(

Thus, (3) holds and (5) holds with ‘ ¼ 21. Then (1) has a solution u satisfying

u2k ¼ uk ¼ 22k for all k [ N0:

This solution u is recessive at 21 and at 1 and has no generalized zero in Z. By Theorem

3.3, the solution v of (2) satisfying

v21 ¼ u21 and v0 ¼ u0

has at least two generalized zeros in Z. Since v is explicitly given by

v21 ¼
1

2
; v0 ¼ 1; v1 ¼ 2

1

2
; v2k ¼ vk ¼ 222jkj for all k [ Nn{1};

this statement can also easily be verified directly as v obviously has on Z exactly the two

generalized zeros 22 and 0.

We conclude this paper by mentioning three more possibilities of extensions, which

may become the subjects of future work.

Remark 3.6. One could consider more general self-adjoint difference equations of the form

DðrkDukÞ þ pkukþ1 ¼ 0; ð6Þ

where rk is assumed to be different from zero but may have both positive and negative

values. See [3, Section 1.5] (and [9, Example 6.7]), where the Fibonacci difference

equation is written as

D ð21ÞkDuk

� �
þ ð21Þ kukþ1 ¼ 0:

A solution of an equation (6) is said to have a generalized zero at k [ Z if uk ¼ 0 or

rkukukþ1 , 0.

Remark 3.7. A generalization of all the presented results to time scales (see [6]) is also a

natural step.

Remark 3.8. The Sturmian comparison method has been extended in various directions.

We are grateful to the referee who drew our attention to the paper [7] (see also [4]), where

a Sturmian theory is developed for pairs of difference equations of a special type, namely

xði þ 1Þ2 aðiÞxðiÞ þ
XN

k¼1

b ðkÞðiÞxði 2 kÞ þ
XM

‘¼1

c ð‘ÞðiÞxði þ ‘Þ ¼ 0;

yði 2 1Þ2 aðiÞyðiÞ þ
XN

k¼1

b ðkÞði þ kÞyði þ kÞ þ
XM

‘¼1

c ð‘Þði 2 ‘Þyði 2 ‘Þ ¼ 0;

where b ðkÞðiÞ; c ð‘ÞðiÞ $ 0.
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Notes

1. Email: dova@techunix.technion.ac.il
2. Email: elias@tx.technion.ac.il
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