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Abstract The article discusses criteria for univalence of analytic functions in the
unit disc. A unified method for creating new sets of conditions ensuring univalence
is presented. Applying this method we are able to find several families of new sharp
criteria for univalence.

1 Introduction

The Schwarzian derivative S f = (
f ′′/ f ′)′ − 1

2

(
f ′′/ f ′)2 of an analytic locally univa-

lent function plays an important role for finding sufficient conditions for univalence.
Nehari [6] found conditions implying univalence expressed in terms of the Schwarzian
derivative: if |S f | ≤ 2(1−|z|2)−2, then f is univalent in the unit disc � = {z, |z| < 1}.
Also if |S f | ≤ π2/2, the same conclusion follows. For deriving his outstanding results
Nehari used a useful connection between the zeros of solutions of linear second order
differential equations and univalence [6]. Later Pokornyi [9] stated without proof the
condition |S f | ≤ 4(1 − |z|2)−1. Nehari then proved this condition [7]. In addition
Nehari extended these results and proved a more general theorem [7,8] concerning
criteria for univalence. In his theorem he also investigated the sharpness of his condi-
tions. These pioneering works of Nehari opened a new line of research in geometric
function theory.
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Our aim in the following article is to present a unified method, simple but useful,
for finding criteria ensuring the univalence of analytic functions in the unit disc. The
paper contains two theorems. In Theorem 1 we present a new (sharp) univalence
criteria depending on a parameter. The proof of Theorem 1 is short and easy while the
proof of Theorem 2 is technically more involved. The method of the proof of Theorem
2 is of independent interest and led us to some interesting results in approximation of
trigonometric functions near their poles. See [2].

2 Nehari’s univalence criteria

Nehari’s pioneering work appeared in [6]. This work opened a fundamental line of
research. His idea was to use a connection between the number of zeros of solutions of
second order linear differential equations in a given domain in the complex plane and
univalence of the quotient of two independent solution of this equation: If u(z), v(z) are
two linearly independent functions (solutions of a linear, homogeneous second order
differential equation) in a domain D such that every linear combination c1u(z)+c2v(z)
has at most one zero in D, then their quotient f (z) = v(z)/u(z) is univalent in D.

Quotients of solutions are naturally related to a differential equation through the
well known Schwarzian derivative operator

S f =
(

f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2

= f ′′′

f ′ − 3

2

(
f ′′

f ′

)2

due to the following property: suppose we are given the linear differential equation

u′′ + p(z)u = 0, (2.1)

where p(z) is an analytic function in the unit disc � and u(z), v(z) are any two linearly
independent solutions of (2.1). Then

S(v/u)(z) = 2p(z). (2.2)

We recall some other basic properties of the Schwarzian derivative. One of them
is: given a Möbius map T = (az + b)/(cz + d), ad − bc �= 0, we have S(T )(z) = 0.
Another useful property is for a composition of two functions g ◦ f :

S(g ◦ f )(z) = (S(g) ◦ f (z)) f ′(z)2 + S( f )(z). (2.3)

If the above f is in particular a Möbius map T then by S(T ) = 0,

S(g ◦ T )(z) = (S(g) ◦ T (z))T ′(z)2. (2.4)

Nehari made use of the Schwarzian derivative and its above properties to arrive at
his sufficient conditions for univalence.

Theorem A (Nehari [7]) Suppose that
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(i) p(x) is a positive and continuous even function for −1 < x < 1,
(ii) p(x)(1 − x2)2 is nonincreasing for 0 < x < 1,

(iii) the real valued differential equation

y′′(x) + p(x)y(x) = 0, −1 < x < 1, (2.5)

has a solution which does not vanish in −1 < x < 1.

Then any analytic function f (z) in � satisfying

|S f (z)| ≤ 2p(|z|) (2.6)

is univalent in the unit disc �.

In what follows we use the term “Nehari’s function” to denote a positive even
function p(x) such that p(x)(1 − x2)2 is nonincreasing for 0 < x < 1. See [11].

As Nehari pointed out already in [6], the functions

p(x) = (1 − x2)−2, p(x) = π2/4, (2.7)

and the corresponding solutions y(x) = (1−x2)1/2, y(x) = cos(πx/2) of the respec-
tive equations (2.5) have all the needed properties to conclude the sufficient conditions
for univalence in �. Soon after that, Hille [5] made the remarkable observation that
the condition |S f | ≤ 2(1 − |z|2)−2 is sharp.

Let us assume, in addition, that p(z) is also analytic in the unit disc � and consider
together with the real equation (2.5) also the analytic differential equation

u′′(z) + p(z)u = 0, z ∈ �. (2.8)

In this case the following definition will be useful:

Definition 1 We shall say that a function p(z), analytic in the open unit disc �, is self
majorant if |p(z)| ≤ p(|z|) for each z ∈ �.

For example, if p(z) = ∑
Ak zk in � and Ak ≥ 0 for all k, then p(z) is self

majorant.
If, in addition to the assumptions of Theorem A, p(z) is self majorant, then f0(z) =

v(z)/u(z) satisfies
|S f0(z)| = 2|p(z)| ≤ 2p(|z|) (2.9)

and f0(z) itself is univalent. Namely, equation (2.8) naturally generates a univalent
function. If by reduction of order of the differential equation we take it’s second
solution as v = u

∫
u−2, then we conclude that equation (2.8) generates a univalent

function

f0(z) =
z∫

0

dt

u2(t)
. (2.10)

Author's personal copy



D. Aharonov, U. Elias

Note, for example, Nehari’s more general condition [8] for univalence in �,

|S f (z)| ≤ 2(1 − μ2)(1 − |z|2)−2+2μ(2 + μ)(1+|z|2)−2, 0 ≤ μ ≤ 1, (2.11)

which which is generated by the function y(x) = (1 − x2)(μ+1)/2(1 + x2)−μ/2,
corresponds to a function p(z) which is not self majorant for μ close to 1. On the
other hand, Nehari’s other condition in [8],

|S f (z)| ≤ 2(1 + μ)(1 − μ|z|2)(1 − |z|2)−2, 0 ≤ μ ≤ 1, (2.12)

which is generated by the function y(x) = (1 − x2)(μ+1)/2, corresponds to a function
p(z) which is self majorant.

In the spirit of Steinmetz [11] we define

Definition 2 We shall say that the univalence criteria (2.6) is sharp if for an analytic
function g(z), the conditions Sg(x) ≥ 2p(x) for −1 < x < 1, Sg(z) �≡ 2p(z) in �

imply that g(z) is not univalent in �.

We claim that if the solution y(x) of the real valued differential equation (2.5) in
Nehari’s Theorem A satisfies

1∫
dt

y2(t)
= ∞,

∫

−1

dt

y2(t)
= ∞, (2.13)

then the corresponding univalence criterion (2.6) is sharp. For this purpose recall
Theorem 1 from [1], where a singular Sturm comparison theorem is presented:

Let P(x), p(x) be continuous functions on the open, finite or infinite interval (a, b)

(but not necessarily at its endpoints), and P(x) ≥ p(x), P(x) �≡ p(x) on (a, b). If
the differential equation

u′′ + p(x)u = 0, a < x < b,

has a solution u(x) which satisfies the boundary conditions

∫

a

dx

u2(x)
= ∞,

b∫
dx

u2(x)
= ∞,

then every solution of the equation

v′′ + P(x)v = 0, a < x < b,

has a zero in (a, b). In particular, there exists a solution v(x) which has two zeros in
(a, b).
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Let g(z)be an analytic function such that Sg(x) ≥ 2p(x) for −1 < x < 1, Sg(z) �≡
2p(z) in �. Consider the differential equation

v′′ + 1

2
Sg(z)v = 0, z ∈ � (2.14)

Due to (2.13) and the singular Sturm comparison theorem, the corresponding real
differential equation

v′′ + 1

2
Sg(x)v = 0

has a solution v(x) with (at least) two zeros in (−1,1). These are, of course, also
zeros of the analytic solution v(z) of (2.14). Hence any quotient v(z)/u(z) of two
linearly independent solutions of (2.14) has two zeros in � and is not univalent
there. Our g(z) is also a quotient of two certain solutions of (2.14) and is related
to v(z)/u(z) by a Möbius map, so it follows that also g(z) is not univalent in �, as
claimed.

It is worth noting that we may use a different approach to prove sharpness. One
can use [4, Thm. 3], which is based on the “relative convexity lemma” . Also in [11],
Corollary 5, it is proved that (2.13) implies sharpness for a more restricted case, namely
for “Nehari’s functions”.

We now outline our method of finding families of conditions for univalence. The
classical Theorem A of Nehari is the main tool in what follows. Our main idea is
to consider a family of differential equations depending on parameters. Let � =
(λ1, λ2, . . . , λn) be a vector of n free real parameters. Let u = u(z,�) be a family of
analytic functions in � depending on these n free parameters. We now generate for
each vector �, through

p = p(z,�) = −u′′(z,�)/u(z,�) (2.15)

a differential equation
u′′ + p(z,�)u = 0, z ∈ �. (2.16)

In addition we assume that the restriction of u to the real axis, u(x,�), is the solution
of the real valued differential equation

y′′(x) + p(x,�)y(x) = 0, −1 < x < 1, (2.17)

which does not vanish in −1 < x < 1.
Suppose we can find a range for � such that p(x,�)(1 − x2)2 is non increasing

for −1 < x < 1. If this is done—we may apply Theorem A in order to find a family
of univalence criteria depending on the vector �.

Since we are mainly interested in sharp conditions for univalence, it will be useful,
due to the previous claim, to deal only with cases where u = u(z,�) vanish at z = ±1.

In the next two sections we suggest two univalence criteria, the first with one
parameter and the other with two parameters.
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3 Univalence criteria depending on one parameter

We have

Theorem 1 Let

p(x, λ) = 2(1 + λ) − 12λx2

(1 − x2)(1 − λx2)
. (3.1)

If f (z) is an analytic function in � satisfying

|S f (z)| ≤ 2p(|z|), (3.2)

with
0 ≤ λ ≤ 1/5, (3.3)

then f (z) is univalent in �. Moreover the theorem is sharp.
Also

f (z) =
z∫

0

dt

(1 − t2)2(1 − λt2)2

is an odd univalent function in � for 0 ≤ λ ≤ 1/5.

Proof Consider the following family of functions depending on the real parameter λ,

u = u(x, λ) = (1 − x2)(1 − λx2) (3.4)

which are positive on (-1, 1) for λ ≤ 1. For the sake of simlicity we restrict ourself to
values of λ ≥ 0. By a straight forward calculation this u is a solution of the differential
equation u′′ + p(x, λ)u = 0, where p = −u′′/u is given by (3.1). In order to apply
Theorem A, we have to show that

p(x)(1 − x2)2 = (2(1 + λ) − 12λx2)(1 − x2)

1 − λx2

is positive and non increasing for 0 ≤ x ≤ 1. With y = x2 we have to verify that

G(y) = (2(1 + λ) − 12λy)(1 − y)

1 − λy

is non increasing, i.e., that

(1 − λy)2G ′(y) = −12λ2 y2 + 24λy + 2(λ2 − 6λ − 1) ≤ 0

for 0 ≤ y ≤ 1. A simple calculation shows that this condition holds if 0 ≤ λ ≤ 1/5.
By another elementary computation we have that all Taylor coefficients appearing

in the expansion of p(z) around zero are nonegative for λ satisfying (3.3). Indeed,
with y = x2,
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p(x, λ) = 2(1 + λ) − 12λx2

(1 − x2)(1 − λx2)
= 2(1 + λ) − 12λy

(1 − y)(1 − λy)
= 2(1 + λ)

1 − λy
+ 2(1 − 5λ)y

(1 − y)(1 − λy)

and all Taylor coefficients are positive for 0 ≤ λ ≤ 1/5. As a corollary of the Taylor
coefficients being nonnegative, we conclude that

|p(z)| ≤ p(|z|). (3.5)

i.e., p(z) is self majorant. Consequently, by (2.10), the function

f (z,�) =
z∫

dz

(1 − z2)2(1 − λz2)2 (3.6)

is univalent in � for 0 ≤ λ ≤ 1/5.
The sharpness of (3.2) follows from the divergence of

∫
u−2 at x = ±1. 
�

4 Univalence criteria depending on two parameters

Now we consider the two-parametric family of functions u(x) = (1−x2)λ cosμ(πx/2)

and p(x) = −u′′/u which it generates. By our general method we have

Theorem 2 Let

p(x) =4λ(1 − λ)x2(1 − x2)−2 + 2λ(1 − x2)−1 + μπ2/4

+ μ(1 − μ)π2 tan2(πx/2)/4 − 2μλπx tan(πx/2)(1 − x2)−1 (4.1)

and let λ,μ satisfy

λ ≥ 0, μ ≥ 0, 1/2 ≤ λ + μ ≤ 1, 2λ + μ ≥ 1. (4.2)

Then if f (z) is an analytic function in � satisfying

|S f (z)| ≤ 2p(|z|), z ∈ �, (4.3)

it follows that f (z) is univalent in �.
Also

f (z) =
z∫

0

dt

u2(t)
=

z∫

0

dt

(1 − t2)2λ cos2μ(π t/2)
(4.4)

is an odd univalent function in �. Moreover the condition (4.3) is sharp.

Proof of Theorem 2 We first note that for the special case λ+μ = 1, λ > 0, μ > 0, the
corresponding p(x) was mentioned by Beesack in [3, p. 217] in a different connection.
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In order to use Theorem A we proceed to find restrictions on λ,μ that will ensure
that for p(x) in (4.1) the function ϕ(x) = p(x)(1− x2)2 is positive and nonincreasing
for 0 < x < 1. It will be convenient to denote

G(x) = (1 − x2) tan(πx/2). (4.5)

With this notation,

ϕ(x)=4λ(1−λ)x2+2λ(1−x2)+μπ2(1−x2)2/4+μ(1−μ)π2G2(x)/4−2μλπxG(x)

(4.6)
and

ϕ′(x) = 8λ(1 − λ)x − 4λx − μπ2x(1 − x2)

+μ(1 − μ)(π2/4)2G(x)G ′(x) − 2μλπ(xG ′(x) + G(x)). (4.7)

We start with some elementary considerations. To ensure that ϕ(x) is positive and
nonincreasing for 0 < x < 1, we must have in particular that ϕ(1) ≥ 0 and ϕ′(1) ≤ 0.
By direct calculation,

G
∣∣∣
x=1− = 4/π, G ′

∣∣∣
x=1− = 2/π, (4.8)

After some more calculations we require that

ϕ(1) = 4(λ + μ)(1 − λ − μ) ≥ 0 (4.9)

and
ϕ′(1) = 4(λ + μ)(1 − 2λ − μ) ≤ 0. (4.10)

From (4.9) it follows that 0 ≤ λ+μ ≤ 1. If λ+μ = 0, then u = (1−x2)λ cosμ(πx/2)

does not vanish at x = ±1, contradicting our assumptions. Hence let 0 < λ + μ ≤ 1.
Summing up, we get from (4.9) and (4.10) the conditions

1 − λ − μ ≥ 0, 1 − 2λ − μ ≤ 0. (4.11)

Consequently λ ≥ 0 and μ ≤ 1 are necessary for ϕ(x) to be nonincreasing.
From now and on we assume for sake of simplicity that μ ≥ 0. From (4.11) it

follows that λ ≥ (1 − μ)/2 which implies λ + μ ≥ (1 + μ)/2. Since we assume that
μ ≥ 0, it follows that

1/2 ≤ λ + μ ≤ 1. (4.12)

We start to show that under the restrictions above, p(z) is self majorant. It will
be enough to verify that all coefficients in the expansion of p around zero are non
negative. For this purpose we rewrite p of (4.1) as
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p(x) = 4λ(1 − λ − μ)

1 − μ

x2

(1 − x2)2 + 2λ

1 − x2 + μπ2

4

+μ(1 − μ)

(
π

2
tan(

πx

2
) − 2λ

1 − μ

x

1 − x2

)2

Since 4λ(1 − λ − μ)/(1 − μ), 2λ, μπ2/4 and μ(1 − μ) are all non negative, it is

sufficient to prove that the Taylor coefficients of
π

2
tan(

πx

2
)− 2λ

1 − μ

x

1 − x2 are non

negative. For this aim we recall the formula [10, Section 3.14]

tan πx/2

πx/2
= 8

π2

∞∑

k=0

λ(2k + 2)x2k, λ(p) =
∞∑

n=0

1

(2n + 1)p
. (4.13)

According to (4.13),

(π

2

)
tan

(πx

2

)
− 2λ

1 − μ

x

1 − x2 =
∞∑

k=0

(
2λ(2k + 2) − 2λ

1 − μ

)
x2k+1. (4.14)

Since λ(p) > 1, the coefficients of the power series of (4.14) are

2λ(2k + 2) − 2λ

1 − μ
> 2 − 2λ

1 − μ
= 2(1 − μ − λ)

1 − μ
≥ 0.

Consequently p(z) is self majorant.
The univalence criterion (4.3) will be proved when we show that ϕ(x) = p(x)(1 −

x2)2 is indeed positive and nonincreasing for 0 ≤ x ≤ 1. With the notation

L(x) = (π/2) tan(πx/2) − 2λ

1 − μ

x

1 − x2 . (4.15)

we have

ϕ(x) =p(x)(1 − x2)2 = 4λ(1 − λ − μ)

1 − μ
x2

+ 2λ(1 − x2) + (μπ2/4)(1 − x2)2 + μ(1 − μ)
[
(1 − x2)L(x)

]2

and

ϕ′(x) = 2λ(1 − 2λ − μ)

1 − μ
2x − μπ2x(1 − x2)

+2μ(1 − μ)
[
(1 − x2)L(x)

] [
(1 − x2)L(x)

]′
.

Since we saw that p(z) is self majorant, it is obvious by the same argument that
p(x) ≥ 0 and ϕ(x) ≥ 0 for 0 ≤ x ≤ 1. So, it remains to establish ϕ′(x) ≤ 0. Since
1 − 2λ − μ ≤ 0 by (4.11), it is left to show only that
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2μ(1 − μ)
[
(1 − x2)L(x)

] [
(1 − x2)L(x)

]′ ≤ μπ2x(1 − x2) (4.16)

We postpone the proof of (4.16) to a later stage (Lemma 1). Once (4.16) will be verified,
the univalence criterion (4.3) will follow. The univalence of the function (4.4) follows
from the self majorance of p(z), as in Theorem 1.

Finally consider the issue of sharpness of (4.3). Note that the multiplicity of the zeros
of u(x) = (1 − x2)λ cosμ(πx/2) at x = 1,−1 is λ + μ and by (4.12), λ + μ ≥ 1/2.
Consequently,

1∫
dx

(1 − x2)2λ cos2μ(πx/2)
= ∞

and the sharpness of (4.3) follows.
Thus the proof of the theorem is complete, except of inequality (4.16). 
�
The next lemma provides some inequalities about the function G(x) = (1 −

x2) tan(πx/2) which are needed to prove (4.16). More upper and lower bounds for
tan(πx/2) which are very precise even at the poles at x = ±1 are discussed in [2].

Lemma 1 For the interval (0,1) we have:

(i) The function G(x) = (1 − x2) tan(πx/2) of (4.5) is convex.

(ii) The function
(1 − x2) tan(πx/2)

πx/2
decreases for 0 ≤ x ≤ 1 and its maximal value

at x = 0 is 1.
(iii)

G(x) ≤ 2

π
(1 + x).

(iv)

π

2
G ′(x) ≤ 1 + π2

4
(1 − x2).

Proof Convexity of G(x) in the interval (0,1) follows from (4.13). Indeed,

G(x) = π

2
x − 4

π

∞∑

k=1

(λ(2k) − λ(2k + 2)) x2k+1 (4.17)

and G ′′(x) < 0 due to monotonicity of λ(p). This proves (i).

Since

(
G(x)

πx/2

)′
≤ 0 by (4.17), it follows that

G(x)

πx/2
is decreasing and thus its

maximum is attained at x = 0. This proves (ii).
For the proof of (iii) we recall that G(1) = 4/π , G ′(1) = 2/π as calculated in (4.8).

The equation of the tangent line through the point (1, 4/π) is y = 4
π

− 2
π

(1 − x) =
2
π

(1 + x). Now (iii) follows using the convexity proved in (i).
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In order to establish (iv) we use (iii) twice. Indeed,

G ′(x) = −2x tan(πx/2) + π

2
(1 − x2)

(
1 + tan2(πx/2)

)
,

hence

G ′(x) − π

2
(1 − x2) = −2x tan(πx/2) + tan(πx/2)

π

2
G(x)

≤ −2x tan(πx/2) + (1 + x) tan(πx/2)

= 1 − x2

1 + x
tan(πx/2) = G(x)

1 + x
≤ 2

π
.

This ends the proof of (iv). 
�
Now we are ready to complete the proof of (4.16). First recall that L(x) =

(π/2) tan(πx/2) − 2λ
1−μ

x
1−x2 ≥ 0 for 0 ≤ x ≤ 1. This follows from the fact that the

coefficients of the power series for L(x) in (4.14) are positive. Second,
−2λ

1 − μ
≤ −1

by (4.11). In addition, by (ii) we have

π

2
(1 − x2) tan

(πx

2

)
=

(π

2

)2 (1 − x2) tan(πx/2)

πx/2
x ≤

(π

2

)2
x .

Moreover, by (iv),

π

2

(
(1 − x2) tan

πx

2

)′ =
(π

2

)
G ′(x) ≤ 1 + π2

4
(1 − x2).

Combining these facts together, we finally have

2
[
(1 − x2)L(x)

] [
(1 − x2)L(x)

]′

≤ 2

(
π

2
(1 − x2) tan

(πx

2

)
− 2λ

1 − μ
x

) (
π

2

(
(1 − x2) tan

(πx

2

))′ − 2λ

1 − μ

)

≤ 2

((π

2

)2
x − x

) (
1 + π2

4
(1 − x2) − 1

)

= 2

((π

2

)2 − 1

)
π2

4
x(1 − x2) ≤ π2x(1 − x2).

Since 0 < μ ≤ 1, the last inequality implies (4.16).
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