Oscillation theory of two-term
differential equations

Uri Elas



CONTENTS

PREFACE . 1i

vil
0. INTRODUCTION
0.1 Linear differential equations and disconjugacy ........................ 1
0.2 Pélya’s factorization ............. .. . .. i 3
0.3 Willet’s notation ........... .. i 7
0.4 Green’s function ........ ... ... 8
1. THE BASIC LEMMA
1.1 Two term equations ... ....un ottt et e e e 11
1.2 The basic lemma ......... .. 12
L3 Examples ... 21
2. BOUNDARY VALUE FUNCTIONS
2.1 Boundary value functions .......... ... ... .. . 27
2.2 More boundary value problems .......... ... ... ... L 31
2.3 Extremal points and boundary value problems ....................... 32
3. BASES OF SOLUTIONS
3.1 A base of solutions ......... ... . 42
3.2 Adjoint equations and boundary value problems ..................... 45
4. COMPARISON OF BOUNDARY VALUE PROBLEMS
4.1 Ordering of boundary value problems ............................... 49
4.2 m-poised boundary value problems ............ ... .. ... 55
4.3 Comparison of Green’s functions ................ ... ... .. ......... 57
5. COMPARISON THEOREMS FOR TWO EQUATIONS
5.1 Pointwise comparison of coefficients ............... . ... . ... .. ..., 60
5.2 Integral comparison of coefficients ...... ... ... .. . L 65
6. DISFOCALITY AND ITS CHARACTERIZATION
6.1 Characterization of disfocality ......... .. ... ... ... .. ... ... . ... 67
6.2 Integral characterization of disfocality ............ ... .. .. .. ... 73
6.3 A lemma of Kiguradze ...... ... .. 78
6.4 Explicit integral criteria for disfocality ....................... ... ... 81
6.5 An asymptotic result ... ... 87
6.6 Euler’s equation and disfocality ............... ... ... L. 91
6.7 Green’s function of the focal boundary value problem ................ 95
7. DIFFERENT TYPES OF DISFOCALITY
7.1 Comparison of various types of disfocality ........................... 98
7.2 Application to the equation y™) +py =10 ... ... ... .. ... ...... 105
7.3 Comparison theorems with integrated coefficients ............ ... ... 107
8. SOLUTIONS ON AN INFINITE INTERVAL
8.1 A classification of the solutions ........... ... ... ... ... . ...... 111
8.2 Nonoscillation and eventual disconjugacy ........................... 120
8.3 Equivalence of disconjugacy and disfocality ......................... 121



vi CONTENTS

8.4 The limit of Green’s functions .......... ... ... ... . ... . ... ....... 124
8.5 Property A, Property B and strong oscillation ...................... 126
8.6 Nonoscillation ........ ... . 129
9. DISCONJUGACY AND ITS CHARACTERIZATION
9.1 Disconjugacy and disfocality ....... ... ... ... .. 131
9.2 Characterization of (k,n — k)-disconjugacy ................ ... ... 133
9.3 Explicit criteria for disconjugacy ........... ... L. 136
9.4 A transformation of the equation ........... .. ... ... ... .. ... .. 139
10. EIGENVALUE PROBLEMS
10.1 Existence of eigenvalues ........ ... . i i 141
10.2 Zeros of eigenfunctions ...... .. ... i 146
10.3 Dependence on the boundary conditions .......................... 152
10.4 Comparison of two-point boundary value problems ................ 156
11. MORE EXTREMAL POINTS
11.1 The ith conjugate point ....... ... ... . ... . .. i 161
11.2 The focal point ... . 164
11.3 Maximal gap between zeros ........ ... .. i il 166
12. MINORS OF THE WRONSKIAN
12.1 Minors as solutions of a differential equation .................... .. 176
12.2 Zeros of odd order minors .......... ... 185
12.3 Applications to oscillation ......... ... ... ... ... 191
13. DOMINANCE OF SOLUTIONS
13.1 DOmINance . ..........o it 193
13.2 Comparison of Minors . ...ttt 200
13.3 Dichotomy of a nonoscillatory set ........ ... .. ... ............... 205
REFERENCES .. o 209



PREFACE

Oscillation theory was born with Sturm’s work in 1836. It has been flourishing
for the past fifty years. Nowadays it is a full, self-contained discipline, turning
more towards nonlinear and functional differential equations.

Oscillation theory flows along two main streams. The first aims to study prop-
erties which are common to all linear differential equations. The other restricts
its area of interest to certain families of equations and studies in maximal details
phenomena which characterize only those equations. Among them we find third
and fourth order equations, self adjoint equations, etc.

Our work belongs to the second type and considers two term linear equations
modeled after y(™) + p(x)y = 0. More generally, we investigate L,y + p(z)y = 0,
where L, is a disconjugate operator and p(x) has a fixed sign. These equations
enjoy a very rich structure and are the natural generalization of the Sturm-Liouville
operator. Results about such equations are distributed over hundreds of research
papers, many of them are reinvented again and again and the same phenomenon
is frequently discussed from various points of view and different definitions of the
authors. Our aim 1s to introduce an order into this plenty and arrange it in a
unified and self contained way. The results are readapted and presented in a
unified approach. In many cases completely new proofs are given and in no case
is the original proof copied verbatim. Many new results are included.

This approach is a subjective one and naturally, it is influenced by the research
of the author and reflects his personal taste. As a result, we do not attempt to
bring here every single known theorem, but rather represent the development of
the mainstream. The effort to achieve a unified theory also caused the omission of
some very elegant results from this treatise, since they utilize exclusive or remote
methods. For example, we do not pay special attention to low order equations, in
spite of the rich literature in the field. Neither do we mention results which are
specific to self adjoint equations.

Haifa, 1996 Uri Elias
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