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ON SINGULAR STURM THEOREMS

D. AHARONOV AND U. ELIAS

Abstract. The article summarizes some developments about a singular
versions of the Sturm Comparison and Separation theorems where the
coefficients or the interval of definition may be unbounded.

The aim of this article is to summarize and popularize some results about
Sturm comparison and separation theorems in singular cases.

The classical Sturm’s Comparison Theorem is formulated as following:
“Consider the two differential equations

u′′ + p(x)u = 0,(1)

v′′ + P (x)v = 0,(2)

where P (x), p(x) are two continuous functions in an interval [a, b], and x1, x2
are two zeros of a solution u of (1) there. If

P (x) ≥ p(x) but P (x) 6≡ p(x)

on (x1, x2), then every solution v of (2) has at least one zero in (x1, x2).”

The Separation Theorem states that “if x1, x2 are two zeros of a solution u
of (1), then every solution of the same equation which is linearly independent
of u(x) has a zero in (x1, x2).”

When the functions P (x), p(x) are continuous only in an open interval but
are unbounded at its endpoints and the zeros of the solution u are located
at the singular endpoints, the above formulations of Sturm’s theorems are

not valid. For example, consider u′′ + pλ(x)u = 0, with pλ(x) =
4λ(1 − λ)

(1 − x2)2
,

0 < λ < 1, which has the solutions

u1(x) = (1− x)λ(1 + x)1−λ, u2(x) = u1(−x)

that vanish at x = 1, −1. If 0 < λ < µ < 1/2, then pµ(x) > pλ(x) on (−1, 1),
but the solution v1(x) = (1−x)µ(1+x)1−µ of v′′+pµ(x)v = 0 does not vanish
between the zeros of u1(x). Thus the claim of the Comparison Theorem is not
satisfied. The solutions u1(x), u2(x) neither satisfy the Separation Theorem
for the same equation.
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The above difficulty may be answered by the following versions of the Sturm
Theorems which are valid for unbounded p(x) and unbounded interval (a, b):

Singular Sturm Comparison Theorem. Consider the two differential
equations (1), (2) where P (x), p(x) are two continuous functions on the open,
finite or infinite interval (a, b), −∞ ≤ a, b ≤ ∞, but not necessarily at its
endpoints. Let the solution u of (1) satisfy the boundary conditions

(3)

∫

a

dx

u2(x)
= ∞,

∫ b dx

u2(x)
= ∞.

If P (x) ≥ p(x), P (x) 6≡ p(x) on (a, b), then every solution of the equation (2)
has a zero in (a, b).

Singular Sturm Separation Theorem. Let p(x) be continuous functions
on (a, b), −∞ ≤ a, b ≤ ∞, but not necessarily at its endpoints. If a solution
u of equation (1) satisfies the boundary conditions (3), then every solution of
the same equation which is linearly independent of u(x) has a zero in (a, b).

In the terminology of Hartman [4, Chapter XI, Section 6], boundary con-
ditions (3) mean that u(x) is a principal solution of equation (1) at both
endpoints of the interval, i.e., u(x) is the essentially unique solution such that
u(x)/û(x) → 0 as x → a and x → b.

Proofs. The following argument is almost verbatim quoted from [1].

Suppose that u(x) > 0 in (a, b), otherwise apply the same arguments for
a smaller interval. Take c ∈ (a, b) so that P (x) 6≡ p(x) both in (a, c) and in
(c, b). We show that the solution v of (2) which is defined by the initial values

(4) v(c) = u(c) > 0, v′(c) = u′(c),

has a zero in (a, c) and a zero in (c, b), i.e., at least two zeros in (a, b). Suppose,
on the contrary, that v(x) 6= 0 in (c, b), and in fact, due to the initial conditions,
v(x) > 0 there. From the identity (vu′ − uv′)′ = vu′′ − uv′′ = (P − p)uv it
follows that

(

vu′ − uv′
)

∣

∣

∣

x

c
=

∫ x

c
(P − p)uv dx.

By the initial value conditions (vu′ − uv′)(c) = 0. Since u, v > 0 and since
P ≥ p, P (x) 6≡ p(x) in [c, b), the integral on the right-hand side increases and
is positive for c < x < b. So for some suitable value d, c < d < b, there exists
a positive lower bound

(vu′ − uv′)(x) ≥ C > 0, d ≤ x < b.

Since u 6= 0 in [c, b),

(

−
v

u

)

′

=
vu′ − uv′

u2
≥

C

u2
> 0, d ≤ x < b.
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Integration on [d, x] yields

(5) −
v(x)

u(x)
+

v(d)

u(d)
≥

∫ x

d

C dx

u2(x)

and by (3),

lim
x→b−

[

−
v(x)

u(x)

]

= +∞,

contradicting the assumption that u, v > 0 on [c, b). Thus v must vanish at
least once in (c, b). By an analogous argument, v(x) has another zero in (a, c)
as well. Once we know that the certain solution v(x) of (2) has two zeros in
(a, b), it follows by the classical separation theorem that every solution of (2)
has at least one zero there.

The proof of the Separation Theorem is immediate: Without loss of gen-
erality we may assume that u(x) 6= 0 in (a, b), otherwise we may apply the
same proof for a subinterval between two consecutive zeros. Another linearly
independent solution of (1) is u(x)

∫ x
x0

dt/u2(t) and every solution is of the
form

(6) c1u(x) + c2u(x)

∫ x

x0

dt

u2(t)
= u(x)(c1 + c2f(x)),

with f(x) =

∫ x

x0

dt

u2(t)
. According to (3), lim

x→a
f(x) = −∞, lim

x→b
f(x) = ∞,

so every solution with c2 6= 0 must change its sign in (a, b).

Only minor literal changes in the proof are needed to adjust the claims for
the equations (ru′)′ + p(x)u = 0, (rv′)′ + P (x)v = 0 with r(x) > 0. �

The boundary conditions (3) are also necessary for the validity of the Sturm
Theorems in the following sense:

Theorem. Let u(x) > 0 be a positive solution of equation (1) on (a, b),
−∞ ≤ a < b ≤ ∞, and assume that at least one of the integrals

(7) L1 :=

∫ x0

a

dt

u2(t)
, L2 :=

∫ b

x0

dt

u2(t)
, a < x0 < b,

is finite.
(a) There exists P (x) > p(x) such that the conclusion of Sturm Comparison
Theorem does not hold for the pair of equations (1), (2).
(b) The conclusion of Sturm Separation Theorem does not hold for equation
(1) on the interval (a, b).

Proof. The Comparison Theorem. Let either one or both quantities
L1, L2 be finite. Our aim is to construct a function P (x) such that P (x) > p(x)
on (a, b) and some solution of the corresponding equation (2) has no zero in
(a, b).
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Let again

f(x) =

∫ x

x0

dt

u2(t)

and recall that if u(x) 6= 0 is a solution of (1) then u(x)

∫ x

x0

dt

u2(t)
= u(x)f(x)

is another solution of the same equation. Hence the function f(x) is the ratio
of two solutions. We shall utilize the Schwarzian derivative of f(x),

Sf =
(

f ′′/f ′
)

′

−
1

2

(

f ′′/f ′
)2

.

It is well known (and straightforward verified) that the Schwarzian of the ratio
of any two solutions, f = u2/u1, satisfies (Sf)(x) = 2p(x).

Due to our assumption, −L1 ≤ f(x) ≤ L2 and (−L1, L2) may be a finite
interval or a half ray. We define

F (x) = g(f(x))

where g(t) is defined on (−L1, L2), g
′(t) > 0 and Sg(t) > 0 there. Suitable

choices of g(t) will be generated below. The Schwarzian derivative of this
composition of mappings satisfies

SF (x) = S(g ◦ f)(x) = Sf(x) +
(

Sg ◦ f(x)
)

f ′(x)2 > Sf(x).

Now we define P (x) by SF (x) = 2P (x) and get accordingly a new equation
(2) with

P (x) =
1

2
SF (x) >

1

2
Sf(x) = p(x).

Since F ′(x) = g′(f(x))f ′(x) > 0 and F (x) increases, we may choose v(x) > 0
so that

F (x) =

∫ x

x0

dt

v2(t)
,

and v(x) = F ′(x)−1/2 is a positive solution of (2) with no zero in (a, b) . Hence
the Sturm Comparison Theorem does not apply to equations (1), (2).

It remains only to generate a suitable g(t) on (−L1, L2), such that g′ > 0,
Sg > 0. This is equivalent to choosing a differential equation

w′′ +R(t)w = 0 with R(t) > 0

which has a positive solution w(t) on (−L1, L2) (i.e., it is disconjugate there).

Indeed, for such w(t) > 0 we define g(t) =

∫ t

t0

w−2 and get g′(t) = w−2(t) > 0,

Sg(t) = 2R(t) > 0.

If L1, L2 are both finite, a simple choice is the differential equation w′′(t) +
π2

(L2 + L1)2
w(t) = 0 with the solution w(t) = sin

(

π(t+ L1)

L2 + L1

)

> 0 on
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(−L1, L2). Then g(t) = − cot

(

π(t+ L1)

L2 + L1

)

+const, Sg(t) =
2π2

(L2 + L1)2
> 0,

and

(8) P (x) = p(x) +
π2

(L2 + L1)2
f ′(x)2 > p(x),

as required.

If L1 < ∞, L2 = ∞, the equation w′′(t) +
1

4(t+ L1)2
w(t) = 0 with a

solution w(t) =
√

t+ L1 > 0 on (−L1,∞) is suitable. It leads to g(t) =
log(t+ L1)+const, Sg = 1/2(t + L1)

2,

P (x) = p(x) +
1

4(t+ L1)2

∣

∣

∣

t=f(x)
f ′(x)2 > p(x) on (−L1,∞).

This g(t) is applicable also for L2 < ∞ if we restrict ourselves to (−L1, L2).
The case of −L1 = −∞, L2 < ∞ is treated similarly.

Note that if −L1 = −∞, L2 = ∞, then no equation w′′ + R(t)w = 0 with
R(t) > 0 may have a positive solution on (−∞,∞), since a concave function
cannot be positive on the whole axis.

The Separation Theorem. As mentioned in (6), the solutions of (1) are

c1u(x) + c2u(x)

∫ x

x0

dt

u2(t)
= c1u(x)(1 +

c2
c1
f(x))

and −L1 ≤ f(x) ≤ L2. If L1 = −∞ and L2 < ∞, take −1/L2 < c2/c1 < 0;
if L1 < ∞, L2 = +∞, take 0 < c2/c1 < 1/L1; if both L1, L2 < ∞, take
c2/c1 sufficiently small. In each case we get a solution of (1) which is linearly
independent of u(x) and has no zero in (a, b), contradicting the claim of the
Separation Theorem. �

Equivalent results

An equivalent result had been proved earlier by Chuaqui et al in [3, Theo-
rem 3], though [3] studies different problems and applies different tools. The
proof is based on the “Relative Convexity Lemma” [3, Lemma 2], [2, p. 477]
which may be stated as following: Let u, v be respectively positive solutions

of equations (1) and (2), P (x) ≥ p(x). Suppose that F (x) =

∫ x

x0

dt

u2(t)
. Then

the function w =
v

u
◦ F−1 is concave.

In [3, Theorem 3] it is proved that the boundary conditions (3) are also
necessary for the validity of the Sturm Comparison Theorem. The proof of
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the necessity in [3, p. 165] may be formulated as following. Multiplying (1)
by u and (2) by v and substracting one from another:

(9) − (P − p)uv = v′′u− vu′′ = (v′u− vu′)′ =

(

u2
(v

u

)

′

)

′

.

With the choice P (x) = p(x) +
k2

u4(x)
, equation (9) becomes

(10) u2
(

u2
(v

u

)

′

)

′

+ k2
(v

u

)

= 0

The change of variables y = f(x) =

∫ x

x0

dt

u2(t)
means

d

dy
= u2(x)

d

dx
, thus

equation (10) is
d2

dy2

(v

u

)

+ k2
(v

u

)

= 0 and has a solution

v(x)

u(x)
= cos(ky) = cos

(

k

∫ x

x0

dt

u2(t)

)

.

If both integrals in (3) are finite, then for sufficiently small k, v(x) 6= 0 on
(a, b). Thus, if (3) is not satisfied, we found an equation (2) with P (x) > p(x)
for which the Comparison Theorem does not apply.

Another equivalent conclusion is achieved implicitly also by Steinmetz in
[5, Theorem 3]. [5] studies the extension of univalent analytic functions on
the unit disc, therefore its results are formulated for a differential equation
y′′ + q(x)y = 0 on [0, 1) and its symmetric extension to (−1, 0].

The proof of necessity of (3) in [5] is based on an argument of a different
type. If u1, u2 are two positive solutions of equation (1), then the function
v = uα1u

1−α
2 , 0 < α < 1, satisfies the differential equation

(11) v′′ +

[

p(x) + α(1− α)
W 2(u1, u2)

u21u
2
2

]

v = 0,

where W (u1, u2) denotes the Wronskian, which is in this case some constant

number. ((11) is easily obtained if one utilizes the logarithmic derivative
v′

v
=

α
u′1
u1

+(1−α)
u′1
u1

and differentiate it once more). If u1 is one positive solution

of (1), every other solution is of the form c1u1(x) + c2u1(x)
∫ x
x0

u−2
1 (t) dt. So,

if
∫ 1
0 dt/u21(t) is finite, a second positive solution

u2(x) = u1(x)

[

1− c

∫ x

0

dt

u21(t)

]

> 0

6



is chosen with |c| is sufficiently small. Utilizing the two positive solutions
u1(x), u2(x), [5] obtains according to (11) an equation (2) with

(12) P (x) = p(x) +
k2

u21u
2
2

> p(x)

and a positive solution v = uα1u
1−α
2 on (a, b) for which the claim of the Com-

parison Theorem does not apply.
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